حل مسائل معادلات دیفرانسیل با مشتقات جزیی با سری فوریه و مسائل مقدار مرزی ناخله اسمر به صورت PDF و به زبان انگلیسی در 209 صفحه
معادله دیفرانسیل یکی از معادلههای ریاضیات است و بیانگر یک تابع مجهول از یک یا چند متغیر مستقل و مشتقهای مرتبههای مختلف آن نسبت به متغیرهای مستقل است. بسیاری از قوانین عمومی طبیعت (در فیزیک، شیمی، زیستشناسی و ستارهشناسی) طبیعیترین بیان ریاضی خود را در زبان معادلات دیفرانسیل مییابند. کاربردهای معادلات دیفرانسیل همچنین در ریاضیات، به ویژه در هندسه و نیز در مهندسی و بسیاری از حوزههای دیگر کاربردی و فنی فراوان هستند.
معادلات دیفرانسیل در بسیاری پدیدههای علوم رخ می دهند. هر زمان که یک رابطه بین چند متغیر با مقادیر مختلف در حالتها یا زمانهای مختلف وجود دارد و نرخ تغییرات متغیرها در زمانهای مختلف یا حالات مختلف شناخته شدهاست میتوان آن پدیده را با معادلات دیفرانسیل بیان کرد.
به عنوان مثال در مکانیک، حرکت جسم بوسیله سرعت و مکان آن در زمانهای مختلف توصیف میشود و معادلات نیوتن به ما رابطه بین مکان و سرعت و شتاب و نیروهای گوناگون وارده بر جسم را میدهد. در چنین شرایطی می توانیم حرکت جسم را در قالب یک معادله دیفرانسیل که در آن مکان ناشناخته جسم تابعی از زمان است بیان کنیم.
شاخهبندی
روشهای حل معادلات دیفرانسیل بسیار مرتبط با نوع معادله هستند. معادلات دیفرانسیل را بهطور کلی به دو دسته میتوان تقسیم کرد.
معادلات دیفرانسیل معمولی: در این نوع معادلات تابع پاسخ دارای تنها یک متغیر مستقل است.
معادلات دیفرانسیل با مشتقات پارهای: در این نوع معادلات تابع پاسخ دارای چندین متغیر مستقل میباشد.
هر دو نوع این معادلات را میتوان از دیدگاه خطی یا غیر خطی بودن تابع پاسخ هم دستهبندی کرد. همچنین مرتبه معادلات دیفرانسیل معمولی و مشتقات پاره ای را میتوان به صورت کسری در نظر گرفت که به معادلات دیفرانسیل کسری مشهورند. این نوع از معادلات دیفرانسیل نیز روشهای حل گوناگونی دارند که میتوان به روش تجزیه آدومیان، هوموتوپی و تکرار تغییرات اشاره نمود.
روشهای حل معادلات
بهطور کل معادلات دیفرانسیل به سه روش تحلیلی، نیمه تحلیلی و عددی حل میشوند. برخی از معادلات دارای پاسخ دقیق و فرم تابعی هستند اینگونه معادلات را میتوان از روشهای تحلیلی حل نمود و به پاسخ دقیق رسید. معادلات دیگر که دارای فرم تابع مشخص نیستند را بایستی توسط روشهای نیمه تحلیلی یا عددی حل کرد. از روشهای نیمهتحلیلی میتوان به روش تجزیه آدومیان، آنالیز هموتوپی، تبدیل دیفرانسیل و… اشاره کرد. روشهای عددی دامنه وسیع تری را برای حل معادلات به کار میگیرد. از روشهای عددی میتوان به روش اویلر، روش هون، روش تیلور، روش رانگ-کوتا، آدامز-بشفورث-مولتون، روش میلن سیمپسون، روش هامینگ، روش رانگ-کوتا فلبرگ مرتبه ۵، روش رحمانزاده کای وایت، روشهای طیفی و شبه طیفی، روشهای شبکهای همانند اجزای محدود و تفاضل محدود و روشهای بدون شبکه اشاره کرد.
فهرست مطالب:
فصل اول: مروری بر کاربردها و تکنیک ها
فصل دوم: سری فوریه
فصل سوم: معادلات دیفرانسیل با مشتقات جزیی در مختصات دکارتی
فصل چهارم: معادلات دیفرانسیل با مشتقات جزیی در مختصات قطبی و استوانه ای
فصل پنجم: معادلات دیفراتسیل با مشتقات جزیی در مختصات قطبی
فصل ششم: تئوری اشتروم – لیوویل با کاربردهای مهندسی
فصل هفتم: تبدیل فوریه و کاربردهای آن
فصل هشتم: تبدیلات لاپلاس و هانکل یا کاربردهای آن ها
فصل نهم: تابع گرین و نگاشت همدیس