تیمار با اشعه ماوراء بنفش UV کیفیت پس از برداشت میوه ها و سبزیجات را به وسیله ی ایجاد مقاومت بهبود بخشیده (به همراه ترجمه)
تیمار با اشعه ماوراء بنفش UV کیفیت پس از برداشت میوه ها و سبزیجات را به وسیله ی ایجاد مقاومت بهبود بخشیده(به همراه ترجمه)
متن انگلیسی این مقاله10 صفحه دوستونی می باشد به صورت pdf اما متن ترجمه شده 25 صفحه و به صورت word می باشد.
نمونه متن:
چکیده:
پیش زمینه: ضررهای قابل توجه محصول میوه ها و سبزیجات تازه در انبار پس از برداشت محصول به دلیل پیری سریع و بیماری ها رخ می دهد.فن آوری سنتی پس از برداشت محصول بیشتر مبتنی بر فناوری خنک کننده و نگه داری مواد شیمیایی است.به عنوان یک روش سترون سازی و نگه داری فیزیکی بدون بقایا, اخیرا درمان با اشعه ماوراء بنفش UV در زمینه ذخیره سازی میوه و سبزیجات پس از برداشت توسط بسیاری از دانشمندان اعمال شده است.
هدف و رویکرد: این مقاله با بررسی کاربرد های اخیر UV-A و B– و C– در ذخیره میوه ها و سبزیجات پس از برداشت محصول , از جمله تاثیر در بیماری, متابولیسم فنولیک و شاخص های مهم کیفیت, دریافته که درمان با اشعه ماوراء بنفش UV به عنوان یک استرس غیر زنده قابل قبول می تواند گیاهان را به تحریک سیستم دفاعی وا دارد تا مولکول های سیگنالینگ را فعال کند ,از جمله ROS , پلی آمین ها, ABA , اتیلن و …, این مستقیما منجر به افزایش مقاومت میوه ها و سبزیجات دربرابر بیماری ها ,پیری و آسیب سرما در هنگام ذخیره سازی می شود.
یافته های کلیدی و نتایج: این بررسی عمدتا بر رابطه بین خواص ضد قارچی میوه ناشی از تیمار UV و تغییر در ساختار فوقانی دیواره سلول متمرکز است و به طور خلاصه اثر درمان UV بر تولید اتیلن , میزان تنفس,استحکام, متابولیسم کلروفیل,سیستم آنتی اکسیدان آنزیمی و سیستم آنتی اکسیدانی غیر آنزیمی را شامل می شود.یافته های خاص این است که اثر نوسان اولیه درمان UV-B بر متابولیسم مواد فنلی موجود در میوه ها و سبزیجات عمدتا توسط فلاونوئید ها ایجاد می شود , نه غیر فلاونوئیدها , و اینکه فلاونوئیدها مهم ترین مواد دخیل در سیستم دفاعی میوه ها و سبزیجات هستند که آنها را در معرض تنش های ماوراء بنفش قرار می دهند.
نمونه متن انگیسی:
ABSTRACT :
Background: Significant product losses of fresh fruits and vegetables occur in the postharvest storage due to rapid senescence and diseases. The traditional postharvest preservation technology is mostly based on cooling and chemical preservation technology. As a residue-free physical sterilization and preservation method, UV treatment has recently been applied to the field of postharvest storage of fruits and vegetables by numerous scientists.
Scope and approach: This article reviews recent applications of UV-A, -B and –C in postharvest storage of fruits and vegetables, including the effect on disease occurrence, phenolic metabolism and important quality indicators,
finds that UV treatment as an acceptable abiotic stress can induce plants to produce defense systems to activate the signalling molecules in advance of the host, including ROS, polyamines, ABA, ethylene, etc, this
directly leads to an increase in the resistance of fruits and vegetables to diseases, senescence, and chilling injury during storage.
Key findings and conclusions: This review mainly focuses on the relationship between fruit antifungal properties induced by UV treatment and changes in the ultrastructure of the cell wall, and summarises the effect of UV
treatment on ethylene production, respiration rate, firmness, chlorophyll metabolism, enzymatic antioxidant
system and non-enzymatic antioxidant system. Particular findings are that the initial fluctuating effect of UV-B treatment on the metabolism of phenolic substances in fruits and vegetables is mainly caused by flavonoids, not
non-flavonoids and that flavonoids are the major substances involved in the defence systems of fruits and vegetables whenthey are exposed to UV stresses.
منابع:
van Acker, S. A., Dj, V. D. B., Tromp, M. N., Griffioen, D. H., van Bennekom, W. P., Wj, V.
- V., et al. (1996). Structural aspects of antioxidant activity of flavonoids. Free
Radical Biology and Medicine, 20(3), 331–342.
Ahn, S. Y., Kim, S. A., Choi, S. J., & Yun, H. K. (2015). Comparison of accumulation of
stilbene compounds and stilbene related gene expression in two grape berries irradiated
with different light sources. Horticulture Environment & Biotechnology, 56(1),
36–43.
Allende, A., Marín, A., Buendía, B., Tomás-Barberán, F., & Gil, M. (2007). Impact of
combined postharvest treatments (UV-C light, gaseous O3, superatmospheric O2 and
high CO2) on health promoting compounds and shelf-life of strawberries. Postharvest
Biology and Technology, 46(3), 201–211.
Amornputti, S., Ketsa, S., & Doorn, W. G. V. (2014). Effect of 1-methylcyclopropene (1-
mcp) on storage life of durian fruit. Postharvest Biology and Technology, 97(3),
111–114.
Araque, L. C. O., Rodoni, L. M., Darré, M., Ortiz, C. M., Civello, P. M., & Vicente, A. R.
(2018). Cyclic low dose uv-c treatments retain strawberry fruit quality more effectively
than conventional pre-storage single high fluence applications. LWT, 92,
304–311.
Assumpção, C. F., Hermes, V. S., Pagno, C., Castagna, A., Mannucci, A., Sgherri, C., et al.
(2018). Phenolic enrichment in apple skin following post-harvest fruit uv-b treatment.
Postharvest Biology and Technology, 138, 37–45.
Basso, A., Moreira, R. D. F. P. M., & José, H. J. (2018). Effect of operational conditions on
photocatalytic ethylene degradation applied to control tomato ripening. Journal of
Photochemistry and Photobiology A: Chemistry, 367, 294–301.
Bintsis, T., Litopoulou-Tzanetaki, E., & Robinson, R. K. (2000). Existing and potential
applications of ultraviolet light in the food industry – a critical review. Journal of the
Science of Food and Agriculture, 80(6), 637–645.
Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., et al. (2012). Critical
review: Vegetables and fruit in the prevention of chronic diseases. European Journal of
Nutrition, 51(6), 637–663.
Bornman, J. F., & Vogelmann, T. C. (2010). Penetration of blue nad uv radiation measured
by fiber optics in spruce and fir needles. Physiologia Plantarum, 72(4), 699–705.
Bu, J., Yu, Y., Aisikaer, G., & Ying, T. (2013). Postharvest UV-C irradiation inhibits the
production of ethylene and the activity of cell wall-degrading enzymes during softening
of tomato (Lycopersicon esculentum L.) fruit. Postharvest Biology and
Technology, 86, 337–345.
Cara, B., & Giovannoni, J. (2008). Molecular biology of ethylene during tomato fruit
development and maturation. Plant Science, 175, 106–113.
Charles, M. T., Arul, J., Charlebois, D., Yaganza, E. S., Rolland, D., Roussel, D., et al.
(2016). Postharvest uv-c treatment of tomato fruits: Changes in simple sugars and
organic acids contents during storage. Lebensmittel-Wissenschaft und -Technologie-
Food Science and Technology, 65, 557–564.
Charles, M. T., Benhamou, N., & Arul, J. (2008a). Physiological basis of UV-C induced
resistance to botrytis cinerea in tomato fruit: III. Ultrastructural modifications and
their impact on fungal colonization. Postharvest Biology and Technology, 47, 27–40.
Charles, M. T., Goulet, A., & Arul, J. (2008b). Physiological basis of UV-C induced resistance
to Botrytis cinerea in tomato fruit. IV: Biochemical modification of structural
- Postharvest Biology and Technology, 47, 41–53.
Charles, M. T., Makhlouf, J., & Arul, J. (2008c). Physiological basis of UV-C induced
resistance to Botrytis cinerea in tomato fruit. II. Modification of fruit surface and
changes in fungal colonization. Postharvest Biology and Technology, 47, 21–26.
Charles, M. T., Mercier, J., Makhlouf, J., & Arul, J. (2008d). Physiological basis of UV-C
induced resistance to botrytis cinerea in tomato fruit. I: Role of pre- and post-challenge
accumulation of the phytoalexin-rishitin. Postharvest Biology and Technology,
47, 10–20.
Charles, M. T., Tano, K., Asselin, A., & Arul, J. (2009). Physiological basis of UV-C induced
resistance to Botrytis cinerea in tomato fruit. V. Constitutive defence enzymes
and inducible pathogenesis-related proteins. Postharvest Biology and Technology, 5,
414–424.
Danon, A., Rotari, V. I., Gordon, A., Mailhac, N., & Gallois, P. (2004). Ultraviolet-c
overexposure induces programmed cell death in arabidopsis, which is mediated by
caspase-like activities and which can be suppressed by caspase inhibitors, p35 and
defender against apoptotic death. Journal of Biological Chemistry, 279(1), 779–787.
Darré, M., Valerga, L., Araque, L. C. O., Lemoine, M. L., Demkura, P. V., Vicente, A. R.,
et al. (2017). Role of uv-b irradiation dose and intensity on color retention and antioxidant
elicitation in broccoli florets ( brassica oleracea, var. italica ). Postharvest
Biology and Technology, 128, 76–82.
Droby, S., Wisniewski, M., Teixidó, N., Spadaro, D., & Jijakli, M. H. (2016). The science,
development, and commercialization of postharvest biocontrol products. Postharvest
Biology and Technology, 122, 22–29.
Du, W. X., Avena-Bustillos, R. J., Iii, A. P. B., & Mchugh, T. H. (2014). Uv-b light as a
factor affecting total soluble phenolic contents of various whole and fresh-cut specialty
- Postharvest Biology and Technology, 93(2), 72–82.
Formica-Oliveira, A. C., Díaz-López, V., Artés, F., & Artés-Hernández, F. (2017). Use of
postharvest uv-b and uv-c radiation treatments to revalorize broccoli byproducts and
edible florets. Innovative Food Science & Emerging Technologies, 43.
Gao, C., Xing, D., Li, L., & Zhang, L. (2008). Implication of reactive oxygen species and
mitochondrial dysfunction in the early stages of plant programmed cell death induced
by ultraviolet-c overexposure. Planta, 227(4), 755–767.
Gogo, E. O., Opiyo, A., Hassenberg, K., Ulrichs, C., & Huyskens-Keil, S. (2017).
Postharvest uv-c treatment for extending shelf life and improving nutritional quality
of african indigenous leafy vegetables. Postharvest Biology and Technology, 129,
107–117.
Gonzalezaguilar, G., Wang, C. Y., & Buta, G. J. (2004). Uv-c irradiation reduces breakdown
and chilling injury of peaches during cold storage. Journal of the Science of Food
and Agriculture, 84(5), 415–422.
Gunasegaran, B., Ding, P., & Kadir, J. (2018). Morphological identification and in vitro
evaluation of Colletotrichum gloesporioides in ‘Chok Anan’ mango using UV-C irradiation.
Acta Horticulturae, 1213, 599–602.
Heijde, Marc, Ulm, & Roman (2012). Uv-b photoreceptor-mediated signalling in plants.
Trends in Plant Science, 17(4), 230–237.
Hideg, E., Jansen, M. A., & Strid, A. (2013). Uv-b exposure, ros, and stress: Inseparable
companions or loosely linked associates? Trends in Plant Science, 18(2), 107–115.
Hua, Z., & Rong, T. (2016). Dietary polyphenols, oxidative stress and antioxidant and
anti-inflammatory effects. Current Opinion in Food Science, 8, 33–42.
Jiang, Z., Zheng, Y., Qiu, R., Yang, Y., Xu, M., Ye, Y., et al. (2015). Short uv-b exposure
stimulated enzymatic and nonenzymatic antioxidants and reduced oxidative stress of
cold-stored mangoes. Journal of Agricultural and Food Chemistry, 63(51).
Jin, P., Wang, H., Zhang, Y., Huang, Y., Wang, L., & Zheng, Y. (2017). UV-C enhances
resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit.
Scientia Horticulturae, 225, 106–111.
Kaewsuksaeng, S., Urano, Y., Aiamla-Or, S., Shigyo, M., & Yamauchi, N. (2011). Effect of
uv-b irradiation on chlorophyll-degrading enzyme activities and postharvest quality
in stored lime (citrus latifolia tan.) fruit. Postharvest Biology and Technology, 61(2),
124–130.
Kataria, S., Guruprasad, K. N., Ahuja, S., & Singh, B. (2013). Enhancement of growth,
photosynthetic performance and yield by exclusion of ambient uv components in c3
and c4 plants. Journal of Photochemistry and Photobiology B, 127(19), 140–152.
Kerch, G. (2015). Chitosan films and coatings prevent losses of fresh fruit nutritional
quality: A review. Trends in Food Science & Technology, 46(2), 159–166.
Lee, M. J., Son, J. E., & Oh, M. M. (2013). Growth and phenolic compounds of lactuca
sativa l. grown in a closed-type plant production system with uv-a, -b, or -c lamp.
Journal of the Science of Food and Agriculture, 94(2), 197–204.
Lei, J., Li, B., Zhang, N., Yan, R., Guan, W., Brennan, C. S., et al. (2018). Effects of uv-c
treatment on browning and the expression of polyphenol oxidase (ppo) genes in
different tissues of agaricus bisporus, during cold storage. Postharvest Biology and
Technology, 139, 99–105.
Lei, W., Peng, J., Jing, W., Gong, H., Zhang, S., & Zheng, Y. (2015). Hot air treatment
induces resistance against blue mold decay caused by penicillium expansum, in sweet
cherry ( prunus cerasus, l.) fruit. Scientia Horticulturae, 189(3), 74–80.
Liao, C., Liu, X., Gao, A., Zhao, A., Hu, J., & Li, B. (2016). Maintaining postharvest
qualities of three leaf vegetables to enhance their shelf lives by multiple ultraviolet-c
- Lebensmittel-Wissenschaft und -Technologie- Food Science and Technology,
73, 1–5.
Li, D., Luo, Z., Mou, W., Wang, Y., Ying, T., & Mao, L. (2014). Aba and uv-c effects on
quality, antioxidant capacity and anthocyanin contents of strawberry fruit ( fragaria
ananassa, duch.). Postharvest Biology and Technology, 90(4), 56–62.
Liu, L., Gregan, S., Winefield, C., & Jordan, B. (2015). From uvr8 to flavonol synthase:
Uv‐b‐induced gene expression in sauvignon blanc grape berry. Plant, Cell and
Environment, 38(5), 905–919.
Liu, C., Han, X., Cai, L., Lu, X., Ying, T., & Jiang, Z. (2011). Postharvest uv-b irradiation
maintains sensory qualities and enhances antioxidant capacity in tomato fruit during
- Postharvest Biology and Technology, 59(3), 232–237.
Liu, J., Sui, Y., Wisniewskia, M., Tian, S., Norelli, J., & Hershkovitz, V. (2012a). Effect of
heat treatment on inhibition of monilinia fructicola and induction of disease resistance
in peach fruit. Postharvest Biology and Technology, 65(3), 61.
Liu, J., Wisniewski, M., Droby, S., Norelli, J., Hershkovitz, V., Tian, S., et al. (2012b).
Increase in antioxidant gene transcripts, stress tolerance and biocontrol efficacy of
candida oleophila following sublethal oxidative stress exposure. FEMS Microbiology
Ecology, 80(3), 578–590.
Lukatkin, A. S. (2002). Contribution of oxidative stress to the development of cold-induced
damage to leaves of chilling-sensitive plants: 1. Reactive oxygen species formation
during plant chilling. Russian Journal of Plant Physiology, 49(5), 622–627.
Marcelak, J., Kathleen, H., Noram, O., Yves, G., & Geert, P. (2008). Plant stress and
human health: Do human consumers benefit from uv-b acclimated crops. Plant
Science, 175(4), 449–458.
Mari, M., Bautista-Baños, S., & Sivakumar, D. (2016). Decay control in the postharvest
system: Role of microbial and plant volatile organic compounds. Postharvest Biology
and Technology, 122, 70–81.
Maurer, L. H., Bersch, A. M., Santos, R. O., Trindade, S. C., Costa, E. L., Peres, M. M., et al.
(2017). Postharvest uv-c irradiation stimulates the non-enzymatic and enzymatic
antioxidant system of “isabel” hybrid grapes ( vitis labrusca × vitis vinifera, l.). Food
Research International, 102, 738–747.
Mercier, J., Arul, J., & Julien, C. (2010). Effect of uv-c on phytoalexin accumulation and
resistance to botrytis cinerea in stored carrots. Journal of Phytopathology, 139(1),
17–25.
Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant
Science, 7(9), 405–410.
Mohamed, N. T. S., Ding, P., Ghazali, H. M., & Kadir, J. (2017a). Biochemical and cell
wall ultrastructural changes in crown tissue of banana (Musa AAA ‘Berangan’) fruit as
mediated by UVC irradiation against crown rot fungal infection. Postharvest Biology
and Technology, 128, 144–152.
Mohamed, N. T. S., Ding, P., Ghazali, H. M., & Kadir, J. (2017b). Potential of UVC germicidal
irradiation in suppressing crown rot disease, retaining postharvest quality
and antioxidant capacity of Musa AAA “Berangan” during fruit ripening. Food
Sciences and Nutrition, 5(5), 967–980.
Nasef, I. N. (2018). Short hot water as safe treatment induces chilling tolerance and
antioxidant enzymes, prevents decay and maintains quality of cold-stored cucumbers.
Postharvest Biology and Technology, 138, 1–10.
Nguyen, C. T. T., Kim, J., Yoo, K. S., Lim, S., & Lee, E. J. (2014). Effect of prestorage uv-a,
-b, and -c radiation on fruit quality and anthocyanin of ‘duke’ blueberries during cold
- Journal of Agricultural and Food Chemistry, 62(50), 12144–12151.
Nguyen, C. T., Lim, S., Lee, J. G., & Lee, E. J. (2017). Vcbbx, vcmyb21, vcr2r3 myb
transcription factors are involved in uv-b induced anthocyanin biosynthesis in the
peel of harvested blueberry fruit. Journal of Agricultural and Food Chemistry, 65(10),
2066–2073.
Park, M. H., & Kim, J. G. (2015). Low-dose uv-c irradiation reduces the microbial population
and preserves antioxidant levels in peeled garlic ( allium sativum, l.) during
- Postharvest Biology and Technology, 100, 109–112.
Pathak, N., Caleb, O. J., Rauh, C., & Mahajan, P. V. (2017). Effect of process variables on
ethylene removal by vacuum ultraviolet radiation: Application in fresh produce
- Biosystems Engineering, 159, 33–45.
Pathak, N., Caleb, O. J., Rauh, C., & Mahajan, P. V. (2019). Efficacy of photocatalysis and
photolysis systems for the removal of ethylene under different storage conditions.
Postharvest Biology and Technology, 147, 68–77.
Pinto, E. P., Perin, E. C., Schott, I. B., Rodrigues, R. D. S., Lucchetta, L., Manfroi, V., et al.
(2016). The effect of postharvest application of uv-c radiation on the phenolic
compounds of conventional and organic grapes ( vitis labrusca, cv. ‘concord’).
Postharvest Biology and Technology, 120, 84–91.
Pombo, M. A., Dotto, M. C., Martínez, G. A., & Civello, P. M. (2009). Uv-c irradiation
delays strawberry fruit softening and modifies the expression of genes involved in cell
wall degradation. Postharvest Biology and Technology, 51(2), 141–148.
Pongprasert, N., Sekozawa, Y., Sugaya, S., & Gemma, H. (2011). A novel postharvest uv-c
treatment to reduce chilling injury (membrane damage, browning and chlorophyll
degradation) in banana peel. Scientia Horticulturae, 130(1), 73–77.
Prasanna, V., Prabha, T. N., & Tharanathan, R. N. (2007). Fruit ripening phenomena–an
- Critical Reviews in Food Science and Nutrition, 47(1), 1–19.
Rodov, V. (1992). Ultraviolet illumination induces scoparone production in kumquat and
orange fruit and improves decay resistance. J.amer.soc.hort.sci, 117(5), 788–792.
Ruan, J., Li, M., Jin, H., Sun, L., Yun, Z., Xu, M., et al. (2015). Uv-b irradiation alleviates
the deterioration of cold-stored mangoes by enhancing endogenous nitric oxide levels.
Food Chemistry, 169, 417–423.
Ruan, J., Li, M., Jin, H., Sun, L., Zhu, Y., Xu, M., et al. (2015). Uv-b irradiation alleviates
the deterioration of cold-stored mangoes by enhancing endogenous nitric oxide levels.
Food Chemistry, 169, 417–423.
Ruiz, V. E., Cerioni, L., Zampini, I. C., Cuello, S., Isla, M. I., Hilal, M., et al. (2017). Uv-b
radiation on lemons enhances antifungal activity of flavedo extracts against penicillium
- Lebensmittel-Wissenschaft und -Technologie- Food Science and
Technology, 85.
Ruiz, V. E., Interdonato, R., Cerioni, L., Albornoz, P., Ramallo, J., Prado, F. E., et al.
(2016). Short-term uv-b exposure induces metabolic and anatomical changes in peel
of harvested lemons contributing in fruit protection against green mold. Journal of
Photochemistry and Photobiology B: Biology, 159, 59–65.
Santin, M., Lucini, L., Castagna, A., Chiodelli, G., Hauser, M. T., & Ranieri, A. (2018).
Post-harvest uv-b radiation modulates metabolite profile in peach fruit. Postharvest
Biology and Technology, 139, 127–134.
Sari, L. K., Setha, S., & Naradisorn, M. (2016). Effect of uv-c irradiation on postharvest
quality of ‘phulae’ pineapple. Scientia Horticulturae, 213, 314–320.
Scattino, C., Castagna, A., Neugart, S., Chan, H. M., Schreiner, M., Crisosto, C. H., et al.
(2014). Post-harvest uv-b irradiation induces changes of phenol contents and corresponding
biosynthetic gene expression in peaches and nectarines. Food Chemistry,
163(3), 51–60.
Severo, J., Oliveira, I. R. D., Tiecher, A., Chaves, F. C., & Rombaldi, C. V. (2015).
Postharvest uv-c treatment increases bioactive, ester volatile compounds and a putative
allergenic protein in strawberry. Lebensmittel-Wissenschaft und -Technologie-
Food Science and Technology, 64(2), 685–692.
Sgherri, C., Scattino, C., Pinzino, C., Tonutti, P., & Ranieri, A. M. (2015). Ultraviolet-b
radiation applied to detached peach fruit: A study of free radical generation by epr
spin trapping. Plant Physiology and Biochemistry, 96(3), 124–131.
Sharma, S., Pareek, S., Sagar, N. A., Valero, D., & Serrano, M. (2017). Modulatory effects
of exogenously applied polyamines on postharvest physiology, antioxidant system
and shelf life of fruits: A review. International Journal of Molecular Sciences, 18(8).
Sheng, K., Zheng, H., Shui, S. S., Yan, L., Liu, C., & Zheng, L. (2018). Comparison of
postharvest uv-b and uv-c treatments on table grape: Changes in phenolic compounds
and their transcription of biosynthetic genes during storage. Postharvest Biology and
Technology, 138, 74–81.
Shen, Y., Sun, Y., Qiao, L., Chen, J., Liu, D., & Ye, X. (2013). Effect of uv-c treatments on
phenolic compounds and antioxidant capacity of minimally processed satsuma
Mandarin during refrigerated storage. Postharvest Biology and Technology, 76(76),
50–57.
Srilaong, V., Aiamla-Or, S., Soontornwat, A., Shigyo, M., & Yamauchi, N. (2011). Uv-b
irradiation retards chlorophyll degradation in lime ( citrus latifolia, tan.) fruit.
Postharvest Biology and Technology, 59(1), 110–112.
Sui, Y., & Liu, J. (2014). Effect of glucose on thermotolerance and biocontrol efficacy of
the antagonistic yeast pichia guilliermondii. Biological Control, 74(3), 59–64.
Sukanya, A., Samak, K., Masayoshi, S., & Naoki, Y. (2010). Impact of uv-b irradiation on
chlorophyll degradation and chlorophyll-degrading enzyme activities in stored
broccoli (brassica oleracea l. italica group) florets. Food Chemistry, 120(3), 645–651.
Taze, B. H., & Unluturk, S. (2018). Effect of postharvest uv-c treatment on the microbial
quality of ‘Şalak’ apricot. Scientia Horticulturae, 233, 370–377.
Teixeira, A., Eiras-Dias, J., Castellarin, S. D., & Gerós, H. (2013). Berry phenolics of
grapevine under challenging environments. In