روشی نوین برای استفاده از رایانه های شخصی همراه ترجمه
روشی نوین برای استفاده از رایانه های شخصی که در حالت اماده به کار قرار دارند تا وظایف خود را در این حالت انجام دهد. (این مقاله در تاریخ 9/1/95 ترجمه شده است )
Anatoly Kalyaeva*, Iakov Korovina
aScientific Research Institute of Multiprocessor Computing Systems of Southern Federal University, Chekov st., 2, Taganrog 347922,
Russia
چکیده یا خلاصه مقاله
در این مقاله مولف پیشنهاد می دهد که روش های جدیدی برای انجام وظایف به صورت منسجم و درست در توزیع محاسبات در کامپیوتر بر اساس منابع داده ای که در کامپیوتر های شخصی وجود دارد .پارامتر هایی که اینچنین منابعی دارند به صورت متغییر های دینامیکی باعث می شوند که برنامه ها محاسبات خود را در سیستم توزیع کنند . برای رسیدن به این مرحله که استفاده ی موثری از کامپیوتر کرد , روش های ارائه شده از روشی که به صورت غیر متمرکز است به وسیله ی واکنش های دوره ایی بهره می برد. برای حل هر وظیفه که به سیستم محول می شود و انها را برای دیس پچ کردن یا جدا کردن اسان تر می کند و محاسبات ان را انجام می دهد. مزیت اصلی پیشنهاد دادن این روش کاهش هزینه های ایجاد و نگه داری توزیع سیستم های ترکیبی می باشد .
نمونه متن انگلیسی:
Abstract
In this paper authors offer the new method for solving coherent tasks in distributed computing system, based on resources
of personal computers. Parameters of such resources are dynamically varying and that makes it hard for their application
in distributed computations. To achieve ability of effective usage of personal computers, proposed method uses
multiagent approach: proactive agent controls every personal computer in distributed computing system, and process of
task solving is dispatched decentralized by interactions of agents. To solve every incoming coherent task agents of the
system unite into community and that makes it easier to dispatch and perform computations. The main benefit of proposed
method is decreasing the price for creating and maintenance of distributed computing system.
منابع:
[1] Foster, I., Kesselman, C. and Tuecke, S. (2001). The Anatomy of the Grid: Enabling Scalable Virtual
- International Journal of High Performance Computing Applications, 15 (3). 200-222. 2001.
[2] Thain, D., Tannenbaum, T., Livny, M. (2005). Distributed Computing in Practice: The Condor Experience
Concurrency and Computation: Practice and Experience, Vol. 17, No. 2-4, 323-356, 2005.
[3] Berman, F. Wolski, R. (2003). Adaptive computing on the Grid using AppLeS, IEEE Transactions on
Parallel and Distributed Systems, Vol. 14, 369 – 382, 2003.
[4] Poleshaev P.N. (2012). Experimental research of algorithms of task planning for GRID-systems with
simulator, Material of international conference “High Performance Computations” HPC-UA’2012 (Ukraine,
Kiev, 8-10 October 2012).
[5] Ivashko E.E., Golovin A.S. (2012). Computation effectiveness of BOINC-GRID / Material of
international conference “High Performance Computations” HPC-UA’2012 (Ukraine, Kiev, 8-10 October
2012) P187-193.
[6] Wooldridge M. (2002). An Introduction to MultiAgent Systems, John Wiley & Sons Ltd, 2002, 366 pages.
[7] Tarasov V.B. (2002). From multiagent systems to intelligent organizations, 2002.
[8]Kalyaev A.I. (2011). Decentralized organization manager for GRID community-based agents, Proceedings
Anatoly Kalyaev and Iakov Korovin / AASRI Procedia 9 ( 2014 ) 131 – 137 137
of the SFU. Technical sciences, ???? 8, 2011, 230-238.
[9] Kalyaev A.I , Melnik E.V. (2010). About one way of the decentralized organization of calculations in grid,
Extreme robototechnics – materials of conference with elements of young scientists school –2010. – P. 73-75.
[10] Kalyaev A.I. (2013). Multiagent Approach for Building Distributed Adaptive Computing System,
Procedia Computer Science, Volume 18, 2013, Pages 2193-2202.
[11] Kalyaev A.I. (2012). Method and algorithms of the adaptive organization of the distributed computations
in a decentralized GRID, Herald of computer and information tecnoligies ????4, 2012????.– Moscow– P. 28-33.
[12] Melnik E.V., Kalyaev A.I. (2010). One way of decentralized organization of GRID-computations,
Infocommunications and computational tecnologies – Ulan-Ude, 2010. – P.160-162.
[13] Hisamutdinov M.V., Korovin I.S., Kalyaev A.I. (2013). The Application of Evolutionary Algorithms in
the Artificial Neural Network Training Process for the Oilfield Equipment Malfunctions’ Forecasting, 2013
2nd International Symposium on Computer, Communication, Control and Automation (3CA 2013)
- – Atlantis press. Pages 253-257.
[14] Gorelova G.V., Radchenko S.A., Melnik E.V., Kalyaev A.I. (2007). Planning of experiment while
researching new methods and algorithms of organization of distributed computations, Herald of computer and
information tecnologies ????10, 2007.– Moscow– P. 49-56.
[15] Korovin, Ya.S., Kalyaev. (2013). A.I.Methods and algorithms of improving the efficiency of data
transmission systems in oil corporations’ enterprise networks. Neftyanoe Khozyaistvo – Oil Industry, Moscow,
????9, pp. 96-100.
[16] Korovin, Ya.S. (2007). Decision support system for electrical submersible pumps control on the neural
network basis. Neftyanoe Khozyaistvo – Oil Industry, Moscow, ????1, pp. 80-83.
[17] Korovin, Ya.S., Khisamutdinov, M.V.,Tkachenko, M.G. (2013). Forecasting of oilfield equipment work
conditions with the application of evolutionary algorithms and artificial neural networks. Neftyanoe
Khozyaistvo – Oil Industry, ????12, pp. 128-132.
[18] Korovin, Ya.S., Tkachenko, M.G.,Kononov, S.V. (2012). Oilfield equipment’s state diagnostics on the
basis of data mining technologies. Neftyanoe Khozyaistvo – Oil Industry, ????9, pp. 116-118.