تخمین حالت ریز شبکه DC و حسگر مستقر بر اساس سنجش فشار(مقاله به همراه ترجمه)

- تخمین حالت ریز شبکه DC و حسگر مستقر بر اساس سنجش فشار(مقاله به همراه ترجمه)

تخمین حالت ریز شبکه DC و حسگر مستقر بر اساس سنجش فشار(مقاله به همراه ترجمه)

مقاله به همراه ترجمه 6 صفحه pdf و 14 صفحه ترجمه word

تخمین حالت ریز شبکه DC و حسگر مستقر بر اساس سنجش فشار

نمونه فارسی:

شوتانگ یو

دانشگاه تنسی , ناکسویل,  TN , ایالات متحده امریکا

ایمیل :    syou3@utk.edu

چکیده- این مقاله یک حالت  تخمینی ریز شبکه ایی DC را پیشنهاد می کند و روش قرار گیری حسگر را بر اساس سنجش فشار را ارائه می دهد. قائده گذاری انواع مختلف اندازگیری ها و مفاهیم تحت چهارچوب پیشنهاد شده توسعه یافته است. یکی از اندازگیری ها فنی را برای کمینه کردن ارتباط ماتریس اندازگیری قرار می دهد و بنابراین افزایش دقت تخمین را به ارمغان می آورد. نتایج شبیه سازی  نشان می دهد که تخمین حالت پیشنهاد شده  رویکرد قرار گیری حسگر می تواند به صورت موثری شمار حسگر ها را که برای به دست آوردن سطح ویژه ای از دقت تخمین می باشند را کاهش دهد.

عبارات شاخص : ریز شبکه DC , تخمین حالت , سنجش فشار

I . مقدمه

ریز شبکه برای تمام کردن تجدیدپذیری ها و منابع  توزیع شده  برای بهبود دادن  قابلیت توان شبکه می باشد, و این ریز شبکه برای کاهش دادن هزینه ها و پیچیدگی های محیط می باشد[1-10].. بسته به این افزایش دادن تولید مبتنی بر تبدیل , ذخیره انرژی و بار ,  ریزشبکه DC یک گزینه معمول برای پیکربندی ریز شبکه می باشد و مشکلات به شدت توسط مطالعات اخیر کنترل می شود. تولید (انرزی) توزیع شده نظیر باد  , PV و سلول های سوختی بر اساس DC یا دارای پیوند های داخلی DC [11-28] هستند. علاوه بر این , برای بهبود بهتر کنترل پذیری و کارآمدی, بارها نیز بر اساس توان DC بیشتر می شوند.به عنوان مثال , موتورها با سرعت های مختلف , آبزار های الکترونیکی , و ابزار های گرمسازی را می توان نام برد.منابع توزیع شده نظیر نظیر باتری ها و ابر خازن ها , شبیه به ابزار های DC ذاتی رده بندی شده اند [29-51].

برای امنیت سیستم ها با توان بزرگ مقیاس با سیستم های کنترل و آگاهی از وضعیت اهدا مجهز شده اند , که این سیستم ها تشکیل می شوند از حسگر ها , الگوریتم های تجزیه و تحلیل پیشرفته و محرک ها یا فعال کننده های چندگانه[5,6, 52-54].افزایش قابلیت تجدیدپذیری دشواری های بیشتری را اضافه می کند همچنین بر مقدار آگاهی بر وضعیت سیستم می افزاید[29,30,49]. مشابه با سیستم های با توان بزرگ , این موضوع برای درک وضعیت عملگر ریز شبکه DC برای کنترل متنوع و اهداف حفاظت مهم می باشد. اختلاف و عدم اطمینان از منابع توزیع شده به همراه خود چالشی برای درک کردن وضعیت عملکرد ریزشبکه در زمان واقعی  می آورد[15,19,55]. از آنجا که ریز شبکه انعطاف پذیری را برای تمام کردن یا قطع مقدار قابل توجهی از منابع توزیع شده بدون نیاز به گزارش به مراکز کنترل همانند شبکه های بزرگ تدارک می بیند, ریز شبکه بیشتر نسبت به تغییر ولتاژ موثر و نوسانات توان جریان آسیب پذیر است [1,56]. علاوه بر این , بسیاری از مولد های توزیع شده و بار ها دارای ابزاری جهت سنجش که نصب شده باشد در نقاط ارتباط نمی باشد, که این موضوع را برای آگاهی موضعی مقایسه شده با شبکه های بزرگ با توان بالا متعارف دشوار می باشد.

آنجا تعدادی مطالعه پیشگام وجود دارند که حسگر فشاری را در سیستم های قدرت اجرا می کند. به عنوان مثال , رفرنس [57,58] سنجش فشار اعمال شده برای به دست آوردن تفکیک پذیری بالاتر زمانی که مشاهده کردن  هارمونیک و درون هارمونیک است .رفرنس [59] , استفاده شده احساس فشار برای تشخیص موقعیت اشتباه در سیستم های توزیع می باشد. رفرنس [60] روش های جدید مطالعه شده بر اساس ایده حس کردن فشار برای تصحیح خطای چشم پوشی شده از طریق  اندازگیری های غیر خطی می باشد رفرنس [61] و [62] یک روش جدید بر اساس حس کردن فشار برای شناسایی وضعیت جغرافیایی می باشد. رفرنس [63] حس گر ولتاژ اتصال قوی در سیستم های توزیع را مطالعه کرده , که اجازه به کار بردن سنجش فشار در تخمین حالت سیستم توزیع را می دهد. در [64,65] , سنجش فشار به کار برده شده بود تا داده های مفقود و داده های هم زمان ساز بد را نوسازی کند و پهنای باند مورد نیاز ارتباطات در  سیستم های اندازگیری مساحت گسترده را کاهش می دهد. رفرنس [66] سنجش فشار اعمال شده را همانند یک روش خنثی سازی سیگنال در ارتباطات خط برق به کار برده اند. در [67,68] , سنجش فشاری اعمال شده بود تا قطعی خطوط برق به وسیله ی توجه کردن به توان شبکه همانند گراف مجزا شناسایی شوند. مسئله وابستگی بالا در ماتریس های سنجش با تجزیه ماتریس حل شده[69].

سهم اصلی این مقاله عبارت است از پیشنهاد یک روش تخمین بر اساس احساس کردن فشار (CS) برای بهبود آگاهی از وضعیت ریزشبکه DC . تحت چهارچوب حس کردن فشار , فرمول های اندازگیری مختلف و مولفه هایی شامل ولتاژ, جریان , و شبه توان و حسگر های واقعی توسعه یافته اند تا شبکه DC تخمینی با استفاده از مقیاس کمتر بیان شود. برای بهبود عملکرد تخمین , روش متر کردن مکان ارائه شده تا اندازه ماتریس وابسته را کاهش دهد. بیان تخمین پیشنهاد شده و روش های متر کردن بر روی شارش توان DC استاندارد جایگاه IEEE 9 و سیستم های  جایگاه 118  تست شده اند.

نمونه انگلیسی:

 

 

DC Microgrid State Estimation and Sensor Placement Based on Compressive Sensing

 

 

Shutang You University of Tennessee, Knoxville, TN, USA

Email: syou3@utk.edu

 

 Abstract— This paper proposes a DC microgrid state estimation and sensor placement method based on compressive sensing. Formulations of various types of measurements and components are developed under the proposed framework. A measurement placing strategy to minimize the coherence of the measurement matrix and thus increase estimation accuracy is presented. Simulation results show that the proposed state estimation and sensor placing approach can effectively reduce the number of sensors to achieve a certain level of estimation accuracy.

Index Terms— DC microgrid, state estimation, compressive sensing.

 

  1. INTRODUCTION

Microgrid is important for integrating renewables and distributed resources for improving power grid reliability, and reducing cost and environmental impact [1-10]. Due to these increasing inverter-based generation, energy storages, and loads, DC microgrid is becoming a popular option for microgrid configuration and its control problems have been intensively studied recently. Distributed generation such as wind, PV, and fuel cells are based on DC or have internal DC links [11-28]. Additionally, to improve better controllability and efficiency, loads are also becoming more based on DC power. For example, the various-speed motors, electronic devices, and heating. Distributed sources such as batteries and super capacitors, are also categorized as DC devices inherently [29-51].

For security, large-scale power systems are equipped with dedicate situation awareness and control systems, which consist sensors, advanced analysis algorithms, and multiple actuators [5, 6, 52-54]. The increase of renewables adds more difficulties as well as value of system situation awareness [29, 30, 49]. Similar to large power systems, it is important to understand DC microgrid operation situation for various control and protection purposes. The variation and uncertainty of distributed resources brings challenges for understanding the real-time microgrid operation situation [15, 19, 55]. As the microgrid provides flexibility for integrating or shut down a substantial amount of distributed resources without having to report to control centers as in large power grids, the microgrid is more vulnerable to drastic voltage changes and power flow fluctuations [1, 56]. Moreover, many distributed generators and loads do not have meters installed at the point of connection, which makes it difficult for situational awareness compared with conventional large power grids.

 There are some pioneer studies that apply compressive sensing has in power systems. For example, Ref. [57, 58] applied compressive sensing to obtain higher resolution when observing harmonics and interharmonics. Ref. [59] used compressive sensing to detect the fault location in distribution systems. Ref. [60] studied new methods based on the idea of compressive sensing to correct spare error from nonlinear measurements. Ref. [61] and [62] proposed a new method based on compressive sensing for topology identification. Ref. [63] studied the strong coupling of voltage phasors in distribution systems, which allows the application of compressive sensing in distribution system state estimation. In [64, 65], compressive sensing was applied to reconstruct missing and bad synchrophasor data and reduce communication bandwidth requirements in wide-area measurement systems. Ref. [66] applied compressive sensing as a signal denoising method in power line communications. In [67, 68], compressive sensing was applied to power line outages identification by considering the power network as single graph. The issue of high coherence in the sensing matrices was tackled by matrix decomposition [69].

The main contribution of this paper is to propose a state estimation method based on compressive sensing (CS) to improve DC microgrid situation awareness. Under the compressive sensing framework, the formulations of various measurements and components including voltage, current, and power pseudo and real sensors are developed for DC grid state estimation using fewer meters. To improve estimation performance, a meter placing method is presented to minimize the coherence of the measurement matrix. The proposed state estimation and meter placement methods are tested on the standard DC power flow representation of the IEEE 9 bus and 118 bus systems.

 نمونه منابع:

 

REFERENCES

[1] S. You, S. W. Hadley, M. Shankar, and Y. Liu, “Co-optimizing generation and transmission expansion with wind power in large-scale power grids—Implementation in the US Eastern Interconnection,” Electric Power Systems Research, vol. 133, pp. 209-218, 2016.

[2] Y. Liu et al., “A distribution level wide area monitoring system for the electric power grid–FNET/GridEye,” IEEE Access, vol. 5, pp. 2329-2338, 2017.

[3] Y. Liu, S. You, J. Tan, Y. Zhang, and Y. Liu, “Frequency response assessment and enhancement of the US power grids toward extra-high photovoltaic generation penetrations—An industry perspective,” IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3438-3449, 2018.

[4] S. You et al., “Impact of high PV penetration on the inter-area oscillations in the US eastern interconnection,” IEEE Access, vol. 5, pp. 4361-4369, 2017.

[5] Y. Liu et al., “Recent developments of FNET/GridEye—A situational awareness tool for smart grid,” CSEE Journal of Power and Energy Systems, vol. 2, no. 3, pp. 19-27, 2016.

[6] S. You, J. Guo, G. Kou, Y. Liu, and Y. Liu, “Oscillation mode identification based on wide-area ambient measurements using multivariate empirical mode decomposition,” Electric Power Systems Research, vol. 134, pp. 158-166, 2016.

[7] Y. Liu, S. You, and Y. Liu, “Study of wind and PV frequency control in US power grids—EI and TI case studies,” IEEE power and energy technology systems journal, vol. 4, no. 3, pp. 65-73, 2017.

[8] S. You et al., “Non-invasive identification of inertia distribution change in high renewable systems using distribution level PMU,” IEEE Transactions on Power Systems, vol. 33, no. 1, pp. 1110-1112, 2017.

[9] W. Yao et al., “Source location identification of distribution-level electric network frequency signals at multiple geographic scales,” IEEE Access, vol. 5, pp. 11166-11175, 2017.

[10] S. You et al., “Impact of high PV penetration on US eastern interconnection frequency response,” in 2017 IEEE Power & Energy Society General Meeting, 2017, pp. 1-5: IEEE.

[11] W. Yao et al., “GPS signal loss in the wide area monitoring system: Prevalence, impact, and solution,” Electric Power Systems Research, vol. 147, pp. 254-262, 2017.

[12] S. You, J. Guo, W. Yao, S. Wang, Y. Liu, and Y. Liu, “Ring-down oscillation mode identification using multivariate empirical mode decomposition,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1-5: IEEE.

[13] S. You et al., “Disturbance location determination based on electromechanical wave propagation in FNET/GridEye: a distribution-level wide-area measurement system,” IET Generation, Transmission & Distribution, vol. 11, no. 18, pp. 4436-4443, 2017.

[14] S. You et al., “A survey on next-generation power grid data architecture,” in 2015 IEEE Power & Energy Society General Meeting, 2015, pp. 1-5: IEEE.

[15] C. Lv, J. Wang, S. You, and Z. Zhang, “Short‐term transmission maintenance scheduling based on the benders decomposition,” International Transactions on Electrical Energy Systems, vol. 25, no. 4, pp. 697-712, 2015.

[16] W. Yao et al., “A fast load control system based on mobile distribution-level phasor measurement unit,” IEEE Transactions on Smart Grid, vol. 11, no. 1, pp. 895-904, 2019.

[17] J. Guo et al., “An ensemble solar power output forecasting model through statistical learning of historical weather dataset,” in 2016 IEEE Power and Energy Society General Meeting (PESGM), 2016, pp. 1-5: IEEE.

[18] J. Wang, R. Wang, P. Zeng, S. You, Y. Li, and Y. Zhang, “Flexible transmission expansion planning for integrating wind power based on wind power distribution characteristics,” J. Electr. Eng. Technol, vol. 10, pp. 709-718, 2015.

[19] J. Wang, J. Lu, Z. Bie, S. You, and X. Cao, “Long-term maintenance scheduling of smart distribution system through a PSO-TS algorithm,” Journal of Applied Mathematics, vol. 2014, 2014.

[20] S. You et al., “Data architecture for the next-generation power grid: Concept, framework, and use case,” in 2015 2nd International Conference on Information Science and Control Engineering, 2015, pp. 679-682: IEEE.

[21] H. Li, P. Ju, C. Gan, S. You, F. Wu, and Y. Liu, “Analytic analysis for dynamic system frequency in power systems under uncertain variability,” IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 982-993, 2018.

[22] S. You et al., “Comparative assessment of tactics to improve primary frequency response without curtailing solar output in high photovoltaic interconnection grids,” IEEE Transactions on Sustainable Energy, vol. 10, no. 2, pp. 718-728, 2018.

[23] L. Wu, S. You, X. Zhang, Y. Cui, Y. Liu, and Y. Liu, “Statistical analysis of the FNET/grideye-detected inter-area oscillations in Eastern Interconnection (EI),” in 2017 IEEE Power & Energy Society General Meeting, 2017, pp. 1-5: IEEE.

[24] Y. Liu, S. You, and Y. Liu, “Smart transmission & wide area monitoring system,” Communication, Control and Security for the Smart Grid, 2017.

[25] X. Zhang et al., “Measurement-based power system dynamic model reductions,” in 2017 North American Power Symposium (NAPS), 2017, pp. 1-6: IEEE.

[26] Y. Zhang et al., “Impacts of power grid frequency deviation on time error of synchronous electric clock and worldwide power system practices on time error correction,” Energies, vol. 10, no. 9, p. 1283, 2017.

[27] S. Liu et al., “Model-free Data Authentication for Cyber Security in Power Systems,” IEEE Transactions on Smart Grid, 2020.

[28] Z. Yuan, S. You, Y. Liu, Y. Liu, D. Osborn, and J. Pan, “Frequency control capability of Vsc-Hvdc for large power systems,” in 2017 IEEE Power & Energy Society General Meeting, 2017, pp. 1-5: IEEE.

[29] S. Hadley, S. You, M. Shankar, and Y. Liu, “Electric grid expansion planning with high levels of variable generation,” ORNL/TM-2015/515, Oak Ridge National Laboratory, 2015.

[30] R. Wang, J. Wang, S. You, and S. Wu, “A Novel Transmission Planning Method for Integrating Large-Scale Wind Power,” in 2012 Asia-Pacific Power and Energy Engineering Conference, 2012, pp. 1-4: IEEE.

[31] J. Li, Z. Teng, Y. Wang, S. You, Y. Liu, and W. Yao, “A fast power grid frequency estimation approach using frequency-shift filtering,” IEEE Transactions on Power Systems, vol. 34, no. 3, pp. 2461-2464, 2019.

[32] X. Zhang, Y. Xue, S. You, Y. Liu, and Y. Liu, “US eastern interconnection (EI) model reductions using a measurement-based approach,” in 2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D), 2018, pp. 1-5: IEEE.

[33] J. Tan, Y. Zhang, S. You, Y. Liu, and Y. Liu, “Frequency Response Study of US Western Interconnection under Extra-High Photovoltaic Generation Penetrations,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018, pp. 1-5: IEEE.

[34] K. Sun et al., “Frequency secure control strategy for power grid with large-scale wind farms through HVDC links,” International Journal of Electrical Power & Energy Systems, vol. 117, p. 105706, 2020.

[35] S. You, Y. Liu, X. Zhang, M. T. Gonzalez, and Y. Liu, “US Eastern Interconnection (EI) Electromechanical Wave Propagation and the Impact of High PV Penetration on Its Speed,” in 2018 IEEE/PES 6

 


Transmission and Distribution Conference and Exposition (T&D), 2018, pp. 1-5: IEEE.

 

[36] W. Wang et al., “Advanced synchrophasor-based application for potential distributed energy resources management: key technology, challenge and vision,” in 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), 2020, pp. 1120-1124: IEEE.

 

[37] J. Zhao, S. You, H. Yin, J. Tan, and Y. Liu, “Data quality analysis and solutions for distribution-level PMUs,” in 2019 IEEE Power & Energy Society General Meeting (PESGM), 2019, pp. 1-5: IEEE.

 

[38] S. You et al., “Energy Storage for Frequency Control in High Photovoltaic Power Grids,” in IEEE EUROCON 2019-18th International Conference on Smart Technologies, 2019, pp. 1-6: IEEE.

 

[39] S. You et al., “FNET/GridEye for Future High Renewable Power Grids—Applications Overview,” in 2018 IEEE PES Transmission & Distribution Conference and Exhibition-Latin America (T&D-LA), 2018, pp. 1-5: IEEE.

 

[40] L. Wu, S. You, J. Dong, Y. Liu, and T. Bilke, “Multiple Linear Regression Based Disturbance Magnitude Estimations for Bulk Power Systems,” in 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018, pp. 1-5: IEEE.

 

[41] Y. Liu et al., “Recent application examples of FNET/GridEye,” in 2018 IEEE 12th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG 2018), 2018, pp. 1-6: IEEE.

 

[42] A. Alharbi, S. You, and Y. Liu, “Correlation between Generator Trips and Locational Marginal Prices (LMPs),” in 2020 17th International Conference on the European Energy Market (EEM), 2020, pp. 1-6: IEEE.

 

[43] K. Sun et al., “A Review of Clean Electricity Policies—From Countries to Utilities,” Sustainability, vol. 12, no. 19, p. 7946, 2020.

 

[44] W. Wang et al., “Information and Communication Infrastructures in Modern Wide-Area Systems,” Wide Area Power Systems Stability, Protection, and Security, pp. 71-104.

 

[45] N. Tong et al., “Dynamic Equivalence of Large-Scale Power Systems Based on Boundary Measurements,” in 2020 American Control Conference (ACC), 2020, pp. 3164-3169: IEEE.

 

[46] H. Yuan et al., “Machine Learning-Based PV Reserve Determination Strategy for Frequency Control on the WECC System,” in 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), 2020, pp. 1-5: IEEE.

 

[47] H. Xiao et al., “Data-Driven Security Assessment of Power Grids Based on Machine Learning Approach,” National Renewable Energy Lab.(NREL), Golden, CO (United States)2020.

 

[48] S. You, “Electromechanical Dynamics of High Photovoltaic Power Grids,” 2017.

 

[49] S. W. Hadley and S. You, “Influence Analysis of Wind Power Variation on Generation and Transmission Expansion in US Eastern Interconnection.”

 

[50] A. Till, S. You, and Y. Liu, “Impact of High PV Penetration on Transient Stability—a Case Study on the US ERCOT System.”

 

[51] X. Zhang, S. You, Y. Liu, L. Wu, and Y. Liu, “Frequency Response Study on the ERCOT under High Photovoltaic (PV) Penetration Conditions.”

 

[52] S. You, J. Guo, W. Yao, S. Wang, Y. Liu, and Y. Liu, “Ring-down oscillation mode identification using multivariate empirical mode decomposition,” in Proc. 2016 IEEE Power and Energy Society General Meeting, 2016, pp. 1-5.

 

[53] S. You et al., “Data Architecture for the Next-Generation Power Grid: Concept, Framework, and Use Case,” in Information Science and Control Engineering (ICISCE), 2015 2nd International Conference on, 2015, pp. 679-682: IEEE.

 

[54] Y. Liu, S. You, and Y. Liu, “Smart Transmission & Wide Area Monitoring System,” in Communication, Control and Security for the Smart Grid: IET, 2017.

 

[55] A. Khorsandi, M. Ashourloo, H. Mokhtari, and R. Iravani, “Automatic droop control for a low voltage DC microgrid,” IET Generation, Transmission & Distribution, vol. 10, no. 1, pp. 41-47, 2016.

 

[56] J. Guo et al., “An Ensemble Photovoltaic Power Forecasting Model Through Statistical Learning of Historical Weather Dataset,” in Power & Energy Society General Meeting, 2016 IEEE, 2016, pp. 1-5: IEEE.

 

[57] M. Bertocco, G. Frigo, C. Narduzzi, and F. Tramarin, “Resolution enhancement by compressive sensing in power quality and phasor measurement,” IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 10, pp. 2358-2367, 2014.

 

[58] T. Yang, H. Pen, D. Wang, and Z. Wang, “Harmonic analysis in integrated energy system based on compressed sensing,” Applied Energy, vol. 165, pp. 583-591, 2016.

 

[59] M. Majidi, A. Arabali, and M. Etezadi-Amoli, “Fault location in distribution networks by compressive sensing,” IEEE Transactions on Power Delivery, vol. 30, no. 4, pp. 1761-1769, 2015.

 

[60] W. Xu, M. Wang, J.-F. Cai, and A. Tang, “Sparse error correction from nonlinear measurements with applications in bad data detection for power networks,” IEEE Transactions on Signal Processing, vol. 61, no. 24, pp. 6175-6187, 2013.

 

[61] M. Babakmehr, M. G. Simões, M. B. Wakin, and F. Harirchi, “Compressive sensing-based topology identification for smart grids,” IEEE Transactions on Industrial Informatics, vol. 12, no. 2, pp. 532-543, 2016.

 

[62] M. Babakmehr, M. G. Simões, M. B. Wakin, A. Al Durra, and F. Harirchi, “Smart-grid topology identification using sparse recovery,” IEEE Transactions on Industry Applications, vol. 52, no. 5, pp. 4375-4384, 2016.

 

[63] S. S. Alam, B. Natarajan, and A. Pahwa, “Distribution grid state estimation from compressed measurements,” IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1631-1642, 2014.

 

[64] S. Das and T. S. Sidhu, “Application of compressive sampling in synchrophasor data communication in WAMS,” IEEE Transactions on Industrial Informatics, vol. 10, no. 1, pp. 450-460, 2014.

 

[65] S. Das and T. Sidhu, “Application of Compressive Sampling in Computer Based Monitoring of Power Systems,” Advances in Computer Engineering, vol. 2014, 2014.

 

[66] J. Matanza, S. Alexandres, and C. Rodriguez-Morcillo, “Difference sets-based compressive sensing as denoising method for narrow-band power line communications,” IET communications, vol. 7, no. 15, pp. 1580-1586, 2013.

 

[67] H. Zhu and G. B. Giannakis, “Sparse overcomplete representations for efficient identification of power line outages,” IEEE Transactions on Power Systems, vol. 27, no. 4, pp. 2215-2224, 2012.

 

[68] H. Zhu and G. B. Giannakis, “Lassoing line outages in the smart power grid,” in Smart Grid Communications (SmartGridComm), 2011 IEEE International Conference on, 2011, pp. 570-575: IEEE.

 

[69] M. Babakmehr, M. G. Simões, A. Al-Durra, F. Harirchi, and Q. Han, “Application of compressive sensing for distributed and structured power line outage detection in smart grids,” in American Control Conference (ACC), 2015, 2015, pp. 3682-3689: IEEE.

 

[70] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information,” Information Theory, IEEE Transactions on, vol. 52, no. 2, pp. 489-509, 2006.

 

[71] M. Bertocco, G. Frigo, C. Narduzzi, and F. Tramarin, “Resolution enhancement by compressive sensing in power quality and phasor measurement,” Instrumentation and Measurement, IEEE Transactions on, vol. 63, no. 10, pp. 2358-2367, 2014.

 

[72] S. Das and T. Singh Sidhu, “Application of compressive sampling in synchrophasor data communication in WAMS,” Industrial Informatics, IEEE Transactions on, vol. 10, no. 1, pp. 450-460, 2014.

 

[73] W. Shen, L. Dai, Y. Shi, X. Zhu, and Z. Wang, “Compressive sensing-based differential channel feedback for massive MIMO,” Electronics Letters, vol. 51, no. 22, pp. 1824-1826, 2015.

 

[74] N. Kulkarni, P. Nagesh, R. Gowda, and B. Li, “Understanding compressive sensing and sparse representation-based super-resolution,” Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22, no. 5, pp. 778-789, 2012.

 

[75] V. Abolghasemi, S. Ferdowsi, B. Makkiabadi, and S. Sanei, “On optimization of the measurement matrix for compressive sensing,” in 2010 18th European Signal Processing Conference, 2010, pp. 427-431.

 

[76] V. Abolghasemi, S. Ferdowsi, and S. Sanei, “A gradient-based alternating minimization approach for optimization of the measurement matrix in compressive sensing,” Signal Processing, vol. 92, no. 4, pp. 999-1009, 2012

 

 

برای دانلود کلیک کنید