پاورپوینت کامل و جامع با عنوان روش های عملگری در مکانیک کوانتومی در 30 اسلاید
مکانیک کوانتومی شاخهای بنیادی از فیزیک نظری است که با پدیدههای فیزیکی در مقیاس میکروسکوپی سروکار دارد. در این مقیاس، کُنِشهای فیزیکی در حد و اندازهٔ ثابت پلانکهستند. مقدار عددی ثابت پلانک نیز بسیار کوچک و برابر است با ۶٫۶۲۶x10-۳۴. ژول-ثانیه.
بنیادیترین تفاوت مکانیک کوانتومی با مکانیک کلاسیک در این است که مکانیک کوانتومی توصیفی سازگار با آزمایشها از ذرات در اندازههای اتمی و زیراتمی در اختیار میدهد، در حالی که مکانیک کلاسیک در قلمرو میکروسکوپی به نتایج نادرست میانجامد. در حقیقت، مکانیک کوانتومی بنیادیتر از مکانیک نیوتنی و الکترومغناطیس کلاسیک است؛ زیرا در مقیاسهای اتمی و زیراتمی که این نظریهها با شکست مواجه میشوند، با دقت زیادی بسیاری از پدیدهها را توصیف میکند. مکانیک کوانتومی به همراه نسبیت پایههای فیزیک جدید را تشکیل میدهند.
مکانیک کوانتومی یا نظریهٔ کوانتومی شامل نظریهای دربارهٔ ماده و تابش الکترومغناطیسی و برهمکنش میان ماده و تابش است.
واژهٔ کوانتوم (به معنی «بسته» یا «دانه») در مکانیک کوانتومی از اینجا میآید که این نظریه به بعضی از کمیتهای فیزیکی (مانند انرژی اتم ساکن) در شرایط خاص مقدارهای گسستهای نسبت میدهد. پایههای مکانیک کوانتومی در نیمهٔ اول قرن بیستم به کوشش ورنر هایزنبرگ، ماکس پلانک، آلبرت اینشتین، لویی دوبروی، نیلز بور، اروین شرودینگر، ماکس بورن، جان فون نویمان، پاول دیراک، ولفگانگ پاولی و دیگران ساخته شد. بعضی از جنبههای بنیادی این نظریه هنوز هم در حال پیشرفت است.
در ابتدای قرن بیستم، کشفیات و تجربههای زیادی نشان میدادند که در مقیاس اتمی نظریههای کلاسیک نمیتوانند توصیف کاملی از پدیدهها ارائه دهند. وجود همین نارساییها موجب نخستین ایدهها و ابداعها در مسیر ایجاد نظریهٔ کوانتومی شد. نمونهٔ مشهور این بود که اگر قرار است مکانیک نیوتنی و الکترومغناطیس کلاسیک بر رفتار اتم حاکم باشند، الکترونها باید به سرعت به سمت هستهٔ اتم حرکت و بر روی آن سقوط میکردند و در نتیجه اتمها ناپایدار میشدند، ولی در دنیای واقعی الکترونها در نواحی خاصی دور اتمها باقی میمانند و چنین سقوطی مشاهده نمیشود. اولین راه حل این تناقض را نیلز بور با پیشنهاد فرضیهاش دایر بر وجود مدارهای مانا مطرح کرد که از قضا در توصیف طیف اتم هیدروژن موفق هم بود.
آثار و پدیدههایی که در مکانیک کوانتومی و نسبیت پیشبینی میشوند به ترتیب فقط برای اجسام بسیار ریز و در سرعتهای بسیار بالا آشکار میشوند. تقریباً همهٔ پدیدههایی که انسان در زندگی روزمره با آنها سروکار دارد با دقت بسیار خوبی با فیزیک نیوتنی پیشبینیپذیر است.
در ابعاد بسیار کوچک ماده (مثلاً در حد نانومتر) یا در انرژیهای بسیار پایین، مکانیک کوانتومی اثرهایی را پیشبینی میکند که فیزیک کلاسیک از پیشبینی آن ناتوان است، ولی اگر ابعاد ماده یا میزان انرژی را افزایش دهیم، به حدی میرسیم که میتوانیم قوانین فیزیک کلاسیک را بدون اینکه خطای فاحشی مرتکب شویم برای توصیف پدیدهها به کار ببریم. به این «حد» که در آن قوانین فیزیک کلاسیک را (که معمولاً سادهترند) میتوان به جای مکانیک کوانتومی در توصیف دقیقی از پدیدهها به کار برد حد کلاسیک گفته میشود.
فهرست مطالب:
طیف انرژی نوسانگر هماهنگ
رابطه جا به جایی بنیادی
تجزیه کلاسیکی هامیلتونی
تجزیه کوانتومی هامیلتونی
بهنجارش در نماد نگاری دیراک
عملگر کاهنده
تاثیر عملگر کاهنده بر حالت پایه
انرژی حالت پایه
عملگر افزاینده
تاثیر عملگر افزاینده بر حالت پایه
نمایشهای حالتهای مجرد
مجموعه کامل مشاهده پذیرهای جا به جا شونده
تعمیم رابطه کاملیت
استخراج معادله شرودینگر
معادله متناظر با تاثیر عملگر کاهنده بر حالت پایه
حالتهای بر انگیخته
وابستگی زمانی عملگرها
وابستگی زمانی مقادیر انتظاری
معادله هایزنبرگ
و…