پاورپوینت کامل و جامع با عنوان جور سازی، ازدواج و قضیه منجر در نظریه گراف در 72 اسلاید

- پاورپوینت کامل و جامع با عنوان جور سازی، ازدواج و قضیه منجر در نظریه گراف در 72 اسلاید

پاورپوینت کامل و جامع با عنوان جور سازی، ازدواج و قضیه منجر در نظریه گراف در 72 اسلاید

 

 

 

 

 

 

 

 

نظریه گراف شاخه‌ای از ریاضیات است که دربارهٔ گراف‌ها بحث می‌کند. این مبحث در واقع شاخه‌ای از توپولوژی است که با جبر و نظریه ماتریس‌ها پیوند مستحکم و تنگاتنگی دارد. نظریهٔ گراف برخلاف شاخه‌های دیگر ریاضیات نقطهٔ آغاز مشخصی دارد و آن انتشار مقاله‌ای از لئونارد اویلر، ریاضیدان سوئیسی، برای حل مسئله پل‌های کونیگسبرگ در سال ۱۷۳۶ است.

پیشرفت‌های اخیر در ریاضیات، به ویژه در کاربردهای آن موجب گسترش چشمگیر نظریهٔ گراف شده‌است به گونه‌ای که هم‌اکنون نظریهٔ گراف ابزار بسیار مناسبی برای تحقیق در زمینه‌های گوناگون مانند نظریه کدگذاری، تحقیق در عملیات، آمار، شبکه‌های الکتریکی، علوم رایانه، شیمی، زیست‌شناسی، علوم اجتماعی و سایر زمینه‌ها گردیده است.

تعریف دقیق‌تر گراف به این صورت است، که گراف مجموعه‌ای از رأس‌ها است، که توسط خانواده‌ای از زوج‌های مرتب که همان یال‌ها هستند به هم مربوط (وصل) شده‌اند.

یال‌ها بر دو نوع ساده و جهت دار هستند، که هر کدام در جای خود کاربردهای بسیاری دارد. مثلاً اگر صرفاً اتصال دو نقطه -مانند اتصال تهران و زنجان با کمک آزادراه- مد نظر شما باشد، کافیست آن دو شهر را با دو نقطه نمایش داده، و اتوبان مزبور را با یالی ساده نمایش دهید. اما اگر بین دو شهر جاده‌ای یکطرفه وجود داشته باشد آنگاه لازمست تا شما با قرار دادن یالی جهت دار مسیر حرکت را در آن جاده مشخص کنید. همچنین برای اینکه فاصله بین دو شهر را در گراف نشان دهید، می‌توانید از گراف وزن دار استفاده کنید و مسافت بین شهرها را با یک عدد بر روی هر یال نشان دهید.

آغاز نظریهٔ گراف به سدهٔ هجدهم بر می‌گردد. لئونارد اویلر ریاضیدان بزرگ مفهوم گراف را برای حل مسئله پل‌های کونیگسبرگ ابداع کرد اما رشد و پویایی این نظریه عمدتاً مربوط به نیم سدهٔ اخیر و با رشد علم انفورماتیک بوده‌است.

مهم‌ترین کاربرد گراف مدل‌سازی پدیده‌های گوناگون و بررسی بر روی آنهاست. با گراف می‌توان به راحتی یک نقشه بسیار بزرگ یا شبکه‌ای عظیم را در درون یک ماتریس به نام ماتریس وقوع گراف ذخیره کرد یا الگوریتمهای مناسب مانند الگوریتم دایکسترا یا الگوریتم کروسکال و… را بر روی آن اعمال نمود.

یکی از قسمت‌های پرکاربرد نظریهٔ گراف، گراف مسطح است که به بررسی گراف‌هایی می‌پردازد که می‌توان آن‌ها را به نحوی روی صفحه کشید که یال‌ها جز در محل رأس‌ها یکدیگر را قطع نکنند. این نوع گراف در ساخت جاده‌ها و حل مسئله کلاسیک و قدیمی سه خانه و سه چاه آب به کار می‌رود.

نظریه گراف یکی از پرکاربردترین نظریه‌ها در شاخه‌های مختلف علوم مهندسی (مانند عمران)، باستان‌شناسی (کشف محدوده یک تمدن) و… است.

روابط میان رأس‌های یک گراف را می‌توان با کمک ماتریس بیان کرد.

برای نمایش تصویری گراف‌ها معمولاً از نقطه یا دایره برای کشیدن رأس‌ها و از کمان یا خط راست برای کشیدن یال بین رأس‌ها استفاده می‌شود.

 

فهرست مطالب:

مقدمه

قضیه (ازدواج) هال

نظریه ترنسورسال

کاربردهای قضیه هال

ماتریسهای (1 و 0)

قضیه کونیگ – اگروری 1931

ترنسورسال مشترک

قضیه منجر

تعداد مسیرهای یال – مجزا

قضیه منجر 1927

شارشهای شبکه

قضیه فورد و فالکرسن در سال 1955

پیدا کردن شارش ماکزیمم

قضیه ها

اثبات قضیه ها

مثال ها

و…

برای دانلود کلیک کنید