پاورپوینت کامل با عنوان سیستم های اسپینی مزوسکوپیک و کنترل کوانتومی آنها در 27 اسلاید
اسپین از خاصیتهای بنیادی ذرات زیراتمی است که معادل کلاسیک ندارد و یک خاصیت کوانتومی بشمار میآید. نزدیکترین خاصیت کلاسیک به اسپین اندازهحرکت زاویهای است. در مکانیک کوانتوم عملگر اسپین درست از همان قانون جابجایی عملگر اندازهحرکت زاویهای پیروی میکند. از لحاظ ریاضی اسپینهای گوناگون جنبههای نمایشیافته (Representation) مختلف گروه (SU(۲ هستند در حالی که اندازهحرکت زاویهای از جبر لی(SO(۳ پیروی میکند. همانطور که ذرههای بنیادی جرم و بار متفاوت دارند، اسپین متفاوت نیز دارند. اسپین یک ذره میتواند صفر یا هر عدد صحیح و نیمصحیح بزرگتر از صفر باشد، یعنی ۱/۲ یا ۱ یا ۳/۲ و الی آخر. مثلاً اسپین الکترون ۱/۲ و اسپین فوتون ۱ و اسپین گراویتون ۲ است. به ذراتی که اسپین نیمصحیح دارند اصطلاحاً فرمیون و به ذراتی که اسپین صحیح دارند بوزون میگویند. ثابت میشود که فرموینها و بوزونها از قوانین آماری متفاوتی پیروی میکنند که به اولی آمار فرمی-دیراک و به دومی آمار بوز-اینشتین میگویند.
در مکانیک کوانتومی با توجه به قانون جابجایی عملگرهای (هر یک از این عملگرها اسپین را در جهت محور خاصی اندازه میگیرند) ثابت میشود که در آن واحد تنها میتوان اسپین را در جهت یکی از محورها اندازه گرفت.
رسم بر این است که این جهت خاص را معمولاً جهت z انتخاب میکنند. وقتی گفته میشود که اسپین ذرهای است منظور این است که بزرگترین مقداری که مؤلفهٔ z (یا هر مؤلفهٔ) دیگری میتواند بپذیرد است. همچنین ثابت میشود که اگر بیشترین مقدار مولفه باشد، اندازهٔ کل اسپین است ولی رسم بر این است که هنگام نامیدن اسپینها از همان مقدار استفاده میشود نه . برای ذرهای با اسپین ، هر یک از مولفههای بردار اسپین آن میتواند مقادیر را بپذیرد. البته چنانکه که گفته شد در آن واحد تنها میتوان آن را در یک جهت اندازه گرفت. پس نتیجه میشود برای اسپین حالت وجود دارد.
کوچکترین اسپین غیر صفر برای یک ذره میتواند ۱/۲ باشد. عملگرهای اسپین ۱/۲ را به کمک ماتریسهایی ۲×۲ به نام ماتریسهای پاولی نشان میدهند. این کوچکترین نمایش وفادار (faithfull representation) از گروه (SU(2 است. در حالت اسپین یکدوم ذره فقط میتواند دو حالت داشته باشد یا اسپینش (یعنی درواقع مولفهٔ z بردار اسپینش) ۱/۲ باشد یا -۱/۲ باشد. به حالت اولی اصطلاحاً اسپین بالا و به دومی اسپین پایین میگویند. در توضیحات غیرتخصصی معمولاً این را حرکت ساعتگرد و پادساعتگرد ذره حول محور z مینامند؛ ولی این تنها برای فهماندن مطلب است و به معنی کلمه درست نیست.
یک مسئله که فهم آن عجیب است مسئله شکل این ذرات است ذراتی که اسپین صفر دارند مانند نقطهاند از هر طرف که نگاه کنیم یا به هر طرف بپرخانیم یک شکل اند ولی ذرات با اسپین ۱ مانند یک تیر (پیکان) هستند واگر آنها را ۱۸۰ درجه بچرخانیم درست عکس شکل خود را میگیرند ذراتی با اسپن ۲ در ۹۰ درجه چنین شکلی میگیرند اما اصل کار بر روی فرمیون هاست زیرا آنها اسپین اعشار دارند و یک الکترون با اسپین ۱/۲ اگر ۳۶۰ درجه چرخانده شود درست به شکل قبل دیده نمیشود (معکوس دیده میشود) ولی در چرخش ۷۲۰ درجه درست مانند قبل مشاهده میشود.
فهرست مطالب:
تعاریف و مفاهیم
اسپین
اسپینترونیک
هدف اسپینترونیک
روند ذخیره اطلاعات
درجات آزادی اسپینی
سیستم دوحالته کوانتومی
مفهوم مزوسکوپیک
سیستم مزوسکوپیک
رژیم مزوسکوپی
گذار از سیستم های چند ذره ای به بس ذره ای
اندرکنش های پیچیده
کاربردهای متنوعی از سیستمهای مزوسکوپیک
نوسانات نورتاب در سیستم های مزوسکوپی
حلقه های کوانتومی
سیستم های اسپینی ناکام
روشی ساده برای کنترل اسپین الکترون ها در نقاط کوانتومی
کامپیوترهای کوانتومی