پاورپوینت کامل و جامع با عنوان سیتوژنتیک گیاهی در 182 اسلاید
آفرینش شناسی یا ژنشناسی یا ژنتیک (از کلمهٔ یونانی Genno به معنای آفرینش دادن) بخشی از دانش زیستشناسی است که به وراثتو تفاوتهای جانداران میپردازد. بوسیله قوانین و مفاهیم موجود در این علم میتوانیم به همانندی یا ناهمانندی دو اندامگان نسبت به یکدیگر پی ببریم و بدانیم که چگونه و چرا چنین همانندی یا ناهمانندی در داخل یک جامعه گیاهی یا جامعه جانوری، بوجود آمدهاست. دانش ژنشناسی، دانش جابجایی دادههای زیستی از یک یاخته به یاختهای دیگر یا از پدر و مادر به نوزاد و نسلهای آینده میباشد. ژنشناسی با چگونگی این جابجاییها که باعث نشانگانها، دگرگونیها و همانندیها در اندامگانها میباشد، سر و کار دارد. دانش ژنشناسی به سرشت فیزیکی و شیمیایی این دادهها نیز میپردازد.
تاریخچه
دانش زیستشناسی، هرچند از کهنترین دانشهایی بودهاست که بشر به آن توجه داشته، اما از حدود یک سدهٔ پیش از این دانش زیرشاخهٔ تازهای پدید آمد که آن را ژنتیک نامیدند و انقلابی در دانش زیستشناسی بوجود آورد. در سدهٔ هجدهم، گروهی از پژوهشگران بر آن شدند که چگونگی جابجایی برخی صفتها و ویژگیها را از نسلی به نسل دیگر بررسی کنند. از این ویژگیها به عنوان ویژگیهای ارثی یاد میشود. به دو دلیل مهم که یکی گزینش ویژگیهای نامناسب و دیگری نداشتن آگاهی کافی در زمینه ریاضیات بود، به نتیجهای نرسیدند.
نخستین کسی که توانست قانونهای حاکم بر انتقال صفتهای ارثی را شناسایی کند، کشیشی اتریشی به نام گرگور مندل بود که در سال ۱۸۶۵ این قانونها را که نتیجهٔ آزمایشهایش روی گیاه نخود فرنگی بود، ارائه کرد. اما متأسفانه جامعه علمی آن زمان به دیدگاهها و کشفهای او اهمیت چندانی نداد و نتیجهٔ کارهای مندل به دست فراموشی سپرده شد. در سال ۱۹۰۰ میلادی کشف دوبارهٔ همان قانونها، توسط درویس، شرماک و کورنز باعث شد که دیدگاههای مندل به گونهای جدیتر مورد توجه و پذیرش قرار گیرد. هم اینک، مندل به عنوان «پدر دانش ژنتیک» شناخته میشود.
در سال ۱۹۵۳ با کشف ساختمان جایگاه ژنها از سوی جیمز واتسون و فرانسیس کریک، رشتهای نو در دانش زیستشناسی بوجود آمد کهزیستشناسی مولکولی نام گرفت. با گذشت حدود یک صده از کشفهای مندل در سالهای ۱۹۷۱ و ۱۹۷۳ در رشته زیستشناسی مولکولی و ژنتیک، که اولی به بررسی ساختمان و چگونگی کارکرد ژنها و دومی به بررسی بیماریهای ژنتیک و پیدا کردن درمانی برای آنها میپرداخت، این دو رشته با هم درآمیختند و رشتهای به نام مهندسی ژنتیک را پدیدآوردند که طی اندک زمانی توانست در رشتههای گوناگون دیگری مانند پزشکی، صنعت، کشاورزی، و… بسیار اثرگذار باشد. پژوهشهای ژنتیکی همچنین به سهم خود موجب شدهاست که آدمی به جهان و دنیای پیرامون خود، بصیرت به مراتب بیشتری پیدا کرده و نگاهی نو بر خویش بیندازد. تمام ویژگیهای فیزیکی ما و تمام موجودات زندهای که روی زمین زیست میکنند تحت نفوذ و متأثر از DNA موجود در سلول یا تغییرات ژنتیکی است که اتفاقی یا اجباری در ناحیهای از ژنوم به وقوع میپیوندد. در این تغییرات معمولاً یک یا چند باز زنجیره اسید نوکلئیک تعویض شده و اطلاعات ژنتیکی ژنوم تغییر میکند و بطور پایدار به نسلهای بعدی منتقل میگردد. از این رو استفاده از این دانش گسترده شدهاست بطوریکه یکی از عرصههای کاربردی این علم تعیین نسبتهای خویشاوندی و شناسایی افراد و تعیین دودمان و نیای ژنتیکی انسانهاست.
امروزه موضوع تعیین هویت ژنتیکی از حیث موضوعات قضایی نیز مورد توجه زیاد قرار گرفتهاست. تعیین هویت ژنتیکی با روشهای مولکولی انگشت نگاریDNA Finger Printing) (DNA با اهداف مختلف در سراسر جهان مورد بهرهبرداری قرار میگیرد. در این روش میتوان از شاخصهای مولکولی نظیر تکرارهای پشت سر هم کوتاه(STRs), DNA میتوکندری، چندشکلیهای تک نوکلئوتیدی(SNPs) در سطح کروموزوم Y و سایر کروموزومها استفاده کرد. از DNA میتوکندری برای ردیابی ژنتیکی نیای مادری و از مطالعه ژنتیکی کروموزوم Y هر فرد به نیای پدری دست خواهیم یافت. همچنین در بررسیهای باستانی خصوصیات ویژهای همچون وجود ارتباط معنادار بین SNPs مورد بررسی قرار میگیرد تا بتوان یک نمونه مورد مطالعه را در گروه خاصی که هاپلوگروپ نام دارد قرار دهند. هاپلوگروپ در واقع دستهای از هاپلوتایپهای نزدیک به یکدیگر میباشد که جهشهایی را از نیای مشترک خود دربردارند. هاپلوتایپها نیز مجموعهای از SNPs در یک توالی نوکلئوتیدی میباشند که با یکدیگر به نسل بعد انتقال مییابند.
از DNA میتوکندری برای شناسایی اعضای خانواده سلطنتی نیکولاس دوم نیز استفاده شدهاست. در سال ۱۹۹۱ چندین مجموعه از استخوانها در یک گور دسته جمعی در روسیه کشف شدند که اعتقاد بر این بود متعلق به نیکولاس دوم، همسرش (سارینا) و ۳ تن از دخترهایش میباشند. با وجود اینکه ۷۰ سال از عمر استخوانها میگذشت اما بررسی توالی tDNA میتوکندری بسیار کارآمد بود. توالی کاملاً مشابهی از ژنوم mtDNA بین سارینا، سه دخترش و پادشاه فیلیپ (پادشاه انگلستان) که در زمان بررسی در قید حیات بود و از نظر نسبی مادربزرگ مادریش خواهر سارینا بود مشاهده شد.
سیتوژنتیک علم مطالعه ساختمان کروموزوم هاست. در این علم کروموزومها با استفاده از تکنیکهای باندینگ (نوارگذاری) یا شیوههای سیتوژنتیک ملکولی مورد تحلیل و بررسی قرار میگیرند. شاخه ای از ژنتیک است که با مطالعه ساختار و ترکیب کروموزومی یک سلول مرتبط است، که شامل آنالیز روتین کروموزومهای G-Band شده و سایر تکنیکهای بندینگ و نیز سیتوژنتیک مولکولی شامل FISH و CGH است.
فهرست مطالب:
فصل اول: کلیات و تعاریف
سیتوژنتیک
مباحث سیتوژنتیک
تکامل کاریوتیپی
اندازه طول کل کروموزوم
ترانس لوکاسیون
اختلاف تعداد کروموزوم
اختلاف در شکل کروموزوم
فصل دوم: کنترل ژنتیکی میوز
میوز چیست؟
مراحل میوز
ویژگی های سیتوژنتیکی میوز
جهش
روشهای شناسایی جهش های میوزی
منشا جهش های میوزی
جهش های سیناپتیک
رفتار سیتوژنتیکی جهش های سیناپتیک
جهش های بی سیناپسی و دسیناپس
فاکتورهای موثر در جفت شدن جهش های سیناپتیک
مواد شیمیایی
نقش ژنها در انفصال کروموزوم ها
نقش هتروکروماتین در جفت شدن کروموزوم ها
میوزهای دیپلوئید مانند در آلوپلوئیدها
هاپلوئید
نر عقیمی
و…
فصل سوم: آنالیز کاریوتیپ
مشخصات اصلی کروموزوم
سانترومر
کینه توکور
بازوها
تلومر
فرورفتگی ثانویه
ماهواره
کاریوتیپ
کاریوگرام
آیدیوگرام
شکل کروموزوم
نام گذاری کروموزوم ها بر اساس روش لوان و همکاران
ویژگی کاریوتیپ
روش های باندینگ
روش هایC باندینگ
Q باندینگ
تشخیص NOR توسط Q باندینگ
نحوه ایجاد FISH
روش های R و G باندینگ
تجزیه کاریوتایپ کروموزوم های جو
و…
فصل چهارم: ناهنجاری های کروموزومی – تغییرات ساختمانی کروموزوم
ناهنجاری های کروموزومی
تغییرات ساختمانی
موانع تغییرات ساختاری
کمبودها
کمبود و حذف
ایجاد حلقه
نقش نقصان در تحول
غالبیت کاذب
و…
ناهنجاری های کروموزومی – تغییرات عددی کروموزوم
هتروپلوئیدی
انواع هتروپلوئیدی
پلی پلوئیدی
یوپولوئیدی
پلی پلوئیدی
آلوپلی پلوئیدی قطعه ای
آتوآلوپلی پلوئیدی
آمفی پلوئیدی
ایجاد آلوپلی پلوئید
مکانیزم های به وجود آورنده پلی پلوئیدی
اثر یوپلوئیدی در تکامل موجودات زنده
و…