حل مسائل ریاضیات پایه ای برای علوم فیزیکی تالیف رایلی و هابسون به صورت PDF و به زبان انگلیسی در 224 صفحه
ریاضیات به مطالعهٔ مباحثی چون کمیت (نظریه اعداد)، ساختار (جبر)، فضا (هندسه)، و تغییرات (آنالیز ریاضی) میپردازد. در حقیقت تمامی تعریفی جهان شمول که همه بر سر آن توافق داشته باشند برای ریاضیات وجود ندارد.
ریاضیدانان به دنبال الگوهایی هستند که بتوان از آنها استفاده کرده و حدسهای جدید را بهصورت فرمول درآورد؛ آنها درستی یا نادرستی حدسها را با اثبات ریاضیاتی نشان میدهند. هرگاه ساختارهای ریاضی مدلهای خوبی از پدیدههای جهان واقعی باشند، استدلال ریاضی میتواند پیشبینیهایی برای طبعیت ارائه کند. علم ریاضیات با استفاده از تجرید و منطق از مفاهیمی چون شمردن، محاسبه و اندازهگیری و مطالعهٔ نظاممند شکلها و حرکات اشیای فیزیکی بهوجود آمد. ریاضیات کاربردی از زمانی که انسان نوشتن را آموخت، بهعنوان فعالیتی بشری وجود داشتهاست. تحقیقات مورد نیاز برای حل مسائل ریاضی، ممکن است سالها یا حتی سدهها طول بکشد.
استدلالهای استوار ابتدا در ریاضیات یونان باستان ظاهر شدند؛ بهخصوص در اثر عناصر اقلیدس. از زمان کارهای تحقیقاتی جوزپه پئانو (۱۸۵۸–۱۹۳۲)، دیوید هیلبرت (۱۸۶۲–۱۹۴۳) و دیگران بر روی دستگاه اصول موضوعهای در پایان سده نوزدهم میلادی، روش تحقیقاتی ریاضیدانان به این شکل درآمده که آنها حقایق را با استدلال استوار از مجموعهٔ منتخبی از اصول موضوعی و تعاریف به دست میآورند. روند پیشرفت ریاضیات تا زمان رنسانس سرعت نسبتاً آرامی داشت، تا زمانی که نوآوریهای ریاضیاتی با کشفیات علمی برهمکنش کرده و منجر به افزایش سریع نرخ اکتشافات ریاضی گشت و تا به امروز نیز ادامه دارد.
ریاضیات در بسیاری از زمینهها مثل علوم طبیعی، مهندسی، پزشکی، اقتصاد و علوم اجتماعی یک علم ضروری است. شاخههای کاملاً جدیدی در ریاضیات بهوجود آمدهاند؛ مثل نظریهٔ بازیها. ریاضیدانان در ریاضیات محض (مطالعهٔ ریاضی به هدف کشف هرچه بیشتر رازهای خود آن) بدون اینکه هیچگونه هدف کاربردی در ذهن داشته باشند به تحقیقات میپردازند؛ در حالی که کاربردهای عملی یافتههای آنها معمولاً بعدها کشف میشود.
فهرست مطالب:
فصل اول: حساب و هندسه (Arithmetic and geometry)
فصل دوم: جبر مقدماتی
فصل سوم: حساب دیفرانسیل
فصل چهارم: حساب انتگرال
فصل پنجم: اعداد مختلط و توابع هیپربولیک
فصل ششم: سری ها و حدود
فصل هفتم: مشتق گیری جزیی
فصل هشتم: انتگرال های چندگانه
فصل نهم: جبر برداری
فصل دهم: ماتریس ها و فضاهای برداری
فصل یازدهم: حساب دیفرانسیل و انتگرال برداری
فصل دوازدهم: انتگرال های خط، سطح و حجم
فصل سیزدهم: تبدیل های لاپلاس
فصل چهاردهم: معادلات دیفرانسیل معمولی
فصل پانزدهم: احتمال مقدماتی
ضمیمه الف: ثابت های فیزیکی
این حل مسائل شامل جواب تمرینات فرد می باشد.