پاورپوینت کامل و جامع با عنوان طیف سنجی رزونانس مغناطیسی هسته یا NMR در 43 اسلاید
تشدید مغناطیسی هستهای (به انگلیسی: Nuclear magnetic Resonance) یک پدیدهٔ فیزیکی بر اساس مکانیک کوانتمی است.
در حضور یک میدان مغناطیسی قوی، انرژی هستههای عناصر مشخصی به علت خواص مغناطیسی این ذرات به دو یا چند تراز کوانتیده شکافته میشوند.الکترونها نیز به طریقی مشابه هسته عمل میکنند. انتقالات میان ترازهای انرژی القاشدهٔ مغناطیسی حاصل میتواند با جذب تابش الکترومغناطیسی بابسامد مناسب انجام شود. درست شبیه انتقالات الکترونی که با جذب تابش فرابنفش یا مرئی صورت میپذیرد. اختلاف انرژی بین ترازهای کوانتومی مغناطیسی برای هستههای اتمی به مقداری است که با تابش در گسترهای از ۰٫۱ تا ۱۰۰MHz مطابقت دارد. طیفبینی NMR هم به منظور کارهای کمّی و هم به منظور شناسایی کیفی مولکولها مورد استفاده قرار میگیرد. هر چند که قدرت اصلی این دستگاه در شناسایی کیفی ترکیبات آلی و زیستی بسیار پیچیدهاست.
در حالت عادی اختلاف انرژی بین ترازهای اسپین هسته صفر است، اما زمانی که اتمها در حضور میدان مغناطیسی قرار میگیرد بر اساس خصوصیت Zeeman حالت تبهگن سیستم کاهش پیدا میکند. با نا پدید شدن میدان اتم تشدید کرده و تابشهای را از خود نشان میدهد که به آن تشدید مغناطیس هسته میگویند.
طیف بینی رزونانس مغناطیسی هسته (NMR) بر اساس اندازهگیری تابش الکترومغناطیسی در ناحیهی فرکانس رادیوئی تقریباً۴ تا ۶۰۰ مگا هرتز بنا شده است. برخلاف جذب فرابنفش، مرئی و زیر قرمز، هستهی اتمها به جای الکترونهای بیرونی در فرایند جذب درگیرند. به علاوه برای آنکه هسته حالتهای انرژی مورد نیاز جهت جذب را پیدا کند، لازم است نمونه در یک میدان مغناطیسی شدید قرار گیرد. هدف عمده از به کار بردن طیفسنجی NMR٬تعیین و تشخیص ساختار مولکولها میباشد. اطلاعات مورد نیاز برای این کار از طریق اندازهگیری، تجزیه و تحلیل و تفسیر طیف NMR با قدرت تفکیک بالا حاصل میگردد. همانطور که میدانیم در طیفسنجی رزونانس مغناطیسی هسته، در غیاب میدان مغناطیسی خارجی تمام هستههای مغناطیسی دارای انرژی برابر هستند، هنگامی که میدان خارجی اعمال میشود، جهتگیریهای همسو و ناهمسو به انرژیهای متفاوتی مربوط خواهند شد. تفاوت انرژی ΔE، دارای ابعاد hυ است. هستهی برخی از اتمها دارای اسپین هستهای (I) هستند. در عدم حضور میدان مغناطیسی، تمام حالات اسپین یک هسته، سطح انرژی یکسانی دارند اما، در حضور میدان مغناطیسی، حالات اسپسنی یکسان نخواهد بود. از جمله هستههای مهم که دارای اسپین میباشند، به هیدروژن (2/1I=) و کربن 13C (2/1I=) میتوان اشاره کرد.
پدیدهی رزونانس مغناطیسی هستهای هنگامی رخ میدهد که هستههای هم جهت میدان اعمال شده انرژی جذب کرده و جهت اسپین خود را نسبت به آن میدان تغییر دهند، یعنی هنگامی که فرکانس میدان الکتریکی نوسانی تابش ورودی که در محدودهی امواج رادیوئی است، کاملاً با فرکانس میدان الکتریکی تولید شده از هسته برابری کند، دو میدان جفت (ادغام) شده و انرژی تابش ورودی به هسته منتقل میگردد و موجب تغییر اسپین میشود. این عمل به رزونانس موسوم است و در این هنگام گفته میشود که آن هسته با موج الکترومغناطیس ورودی در رزونانس است. جذب انرژی یک فرایند کوانتایی بوده و انرژی جذب شده برابر اختلاف انرژی بین دو حالت موجود است:
hυ = (حالت 2/1+ E – حالت 2/1- E)= جذب شده E
در عمل، این اختلاف انرژی تابع قدرت میدان مغناطیسی اعمال شده (B0) است (شکل ۱۲–۲۰). فرکانس تابش با فرکانس رادیوئی که به وسیلهی یک هستهی خاص جذب میشود، به شدت تحت تأثیر محیط شیمیایی آن، یعنی الکترونها و هستههای مجاور قرار دارد. در نتیجه حتی مولکولهای ساده منبعی از اطلاعات طیفی را فراهم کنند که میتواند جهت تعیین ساختار شیمیایی آنها به کار برده شود. پروتونهای مولکول توسط الکترونها احاطه شده و محیط الکترونی هر یک از پروتونها به طور جزئی با دیگر پروتونها فرق میکند. به عبارت دیگر، پروتونها توسط الکترونهایی که آنها را احاطه کردهاند پوشیده یا محافظت میشوند. هر قدر دانسیتهی الکترونی اطراف یک هسته بیشتر باشد، میدان مغناطیسی تولید شده توسط الکترونها، که در جهت عکس میدان اعمال شده است، بیشتر خواهد بود. در این حالت، میدان حاصله برای آن هسته کاهش مییابد.
چون هسته، میدان مغناطیسی اعمال شدهی کمتری را احساس کرده، پس در فرکانس پایینتری گردش میکند، یعنی در این فرکانس پایین، تابش فرکانس رادیویی را جذب میکند. هر پروتون در محیط شیمیایی نسبتاً متفاوتی قرار دارد، در نتیجه مقدار ممانعت الکترونی، اندکی فرق دارد و فرکانس رزونانس آن نیز فرق خواهد داشت. اندازهگیری فرکانس رزنانس هر پروتون کار بسیار دشواری است و بنابراین، تلاشی در جهت اندازهگیری دقیق فرکانس رزنانسی پروتون صورت نمیگیرد و به جای آن از یک ترکیب شاهداستفاده میشود. این ترکیب شاهد را در محلولی که حاوی ماده مورد نظر است ریخته و فرکانس رزنانس هر پروتون نمونه را نسبت به فرکانس رزنانس پروتونها مادهی شاهد اندازهگیری میکنند. به عبارت بهتر، اختلاف فرکانس اندازهگیری میشود. ماده شاهد استاندارد، تترامتیلسیلان (CH3)4Si)) بوده که به TMS موسوم است. علت استفاده از این ماده این است که پروتونهای گروههای متیل آن بیش از اکثر ترکیبات محافظت میشوند؛ بنابراین، هنگام مطالعه یک ترکیب، رزنانس پروتونهای آن برحسب این که آنها به چه مقدار (بر حسب Hz) از فاطله دارند، گزارش میشود. تغییر مکان یک پروتون نسبت به TMS (بر حسب Hz) بستگی به قدرت میدان مغناطیسی اعمال شده دارد. با تقسیم تغییر مکان (Hz) یک پروتون به فرکانس (MHz) طیفسنج، واحد جدید به نام تغییر مکان شیمیایی حاصل میگردد که مستقل از میدان میباشد.
تغییر مکان شیمیایی بر حسب واحد δ، بیانگر اندازهایست که رزنانس یک پروتون بر حسب قسمت در میلیون (ppm) فرکانس دستگاه طیفسنج از TMS فاصله گرفته است.
تمام پروتونهای یک مولکول که در محیط شیمیایی یکسانی قرار دارند، اغلب دارای تغییر مکان شیمیایی یکسانی هستند، فقط یک جذب میدهند و از یک نوع هستند. این پروتونها از لحاظ شیمیایی معادل خوانده میشوند. از طرفی، مجموعهای از پروتونهای موجود در مولکولها که از لحاظ شیمیایی متفاوت هستند، جذب مختص به خود را میدهند. نه تنها انواع گوناگون پروتونها تغییر مکان شیمیایی مختلفی دارند، بلکه مقدار تغییر مکان شیمیایی(δ)آن پروتونها، صفت مشخصهی نوع آنها خواهد بود. هر نوع پروتون فقط در محدودهای از δ رزونانس میدهد. در طیفسنجی NMR تعداد قلل موجود در طیف، تعداد انواع پروتونها را در مولکول مشخص میکند. نه تنها طیف NMR تعداد انواع گوناگون پروتونهای یک مولکول را مشخص میکند، بلکه هم چنین قادر به تشخیص تعداد پروتونهای هر یک از انواع نیز میباشد. درطیف NMR مساحت هر قله متناسب با تعداد هیدروژنهایی است که آن قله را ایجاد میکنند.
فهرست مطالب:
NMR
تفاوت با دیگر روشها
توانایی تکنیک NMR
محدودیت NMR
رزونانس مغناطیسی هسته
ESR
اندازه حرکت زاویه ای ذرات بنیادی
عدد کوانتومی اسپین برای هسته های مختلف
خواص مغناطیسی ذرات بنیادی
عدد کوانتومی مغناطیسی m
ترازهای انرژی در یک میدان مغناطیسی
انرژی پتانسیل یک ذره با ممان مغناطیسی
جذب تابش
حرکت تقدیمی ذرات در یک میدان
فرکانس حرکت تقدیمی
فرکانس مکانیک کوانتومی
مکانیسمهای برگشت هسته در حالت با انرژی بالاتر (یا اسپین برانگیخته) به حالت با انرژی پایینتر
برگشت به تراز پایه با نشر انرژی hv
فرآیندهای آسایش
هدف در NMR: اندازه گیری جذب در حضور میدان Ho
انواع آسایش
آسایش اسپین- اسپین
عوامل پهن شدن خطوط طیفهای NMR
انواع ناهمگنی
اندازه گیری جذب
اندازه گیری تغییرات جذب فرکانس تابشی در میدان ثابت Ho اعمال شده
انواع اسپکتروسکوپی NMR
اجزاء دستگاهی NMR
مغناطیس
مولد روبش میدان
منبع فرکانس رادیویی
آشکارساز
ظرف نمونه
معیار اندازه گیری کمی
حلال نمونه
کاربرد طیف بینی NMR در مطالعات ساختمانی
انواع آثار محیطی
جابجایی شیمیایی
شکافتگی اسپین-اسپین
منبع جابجایی شیمیایی
مقیاسهای طولی برای NMR
و…