حل مسائل مقدمه ای بر احتمالات برتسکاس و تیتسیکلیس به صورت PDF و به زبان انگلیسی در 133 صفحه
نظریهٔ احتمال مطالعهٔ رویدادهای احتمالی از دیدگاه ریاضیات است. بعبارت دیگر، نظریه احتمال به شاخهای از ریاضیات گویند که با تحلیل وقایع تصادفی سروکار دارد. هسته تئوری احتمال را متغیرهای تصادفی و فرایندهای تصادفی و پیشامدها تشکیل میدهند. نظریه احتمال علاوه بر توضیح پدیدههای تصادفی به بررسی پدیدههایی میپردازد که لزوماً تصادفی نیستند ولی با تکرار زیاد دفعات آزمایش نتایج از الگویی مشخص پیروی میکنند، مثلاً در آزمایش پرتاب سکه یا تاس با تکرار آزمایش میتوانیم احتمال وقوع پدیدههای مختلف را حدس بزنیم و مورد بررسی قرار دهیم. نتیجه بررسی این الگوها قانون اعداد بزرگ و قضیه حد مرکزی است.
مفهوم احتمال در مورد ارتباط یا پیوند دو متغیر به کار میرود، به این معنی که ارتباط یا پیوند آنها به صورتی است که حضور، شکل، وسعت و اهمیت هر یک وابسته به حضور، شکل، و اهمیت دیگری است. این مفهوم به صورت محدودتر و در مورد ارتباط دو متغیر کمّی نیز بهکار برده میشود.
ریاضیدانان عددی بین صفر و یک را به عنوان احتمال یک رویداد تصادفی به آن نسبت میدهند. رویدادی که حتماً رخ دهد، احتمالش یک است و رویدادی که احتمالش صفر است، در واقع احتمال وقوع ندارد. باید توجه داشت که در تعریف دقیق ریاضی، میان احتمال و امکان تفاوت میگذارند. یعنی احتمال وقوع یک امر ممکن میتواند صفر باشد. مثلاً احتمال اینکه طول یک پارهخط دقیقاً ۳٫۱ سانتیمتر باشد (اندازهگیری شده با هر ابزاری با هر میزان دقت) صفر است. چون بین ۳٫۲ و ۳٫۰ بینهایت عدد وجود دارد ولی از لحاظ منطقی ممکن است که طول پارهخطی ۳٫۱ سانتیمتر باشد. احتمال شیر آوردن در پرتاب یک سکه سالم است، همانطور که احتمال خط آوردن هم است. احتمال اینکه پس از انداختن یک تاس سالم شش بیاوریم است.
به زبان سادهٔ ریاضی احتمال، نسبت تعداد اعضای مجموعهٔ پیشامدهای دلخواه به تعداد اعضای مجموعهٔ تمام پیشامدهای ممکن است. مثلاً در مورد تاس، برای محاسبهٔ احتمال آوردن عددی زوج، مجموعهٔ پیشامدهای ممکن هست: {۱٫۲٫۳٫۴٫۵٫۶} و مجموعهٔ پیشامدهای دلخواه هست: {۲٫۴٫۶}. تعداد اعضای مجموعهٔ دلخواه هست ۳ و تعداد اعضای مجموعهٔ پیشامدهای ممکن هست ۶. پس احتمال هست:
جمع احتمال رخ دادن یک رویداد با احتمال رخ ندادن رویداد مکمل آن، عدد یک میشود. مثلاً در تاس ریختن جمع «احتمال آوردن شش» (که است) با «احتمال نیاوردن شش» (که است) میشود یک.
فهرست مطالب:
فصل اول: فضای نمونه و احتمال
فصل دوم: متغیرهای تصادفی گسسته
فصل سوم: متغیرهای تصادفی عمومی
فصل چهارم: مباحث بیشتر در مورد متغیرهای تصادفی
فصل پنجم: قضایای حد (Limit Theorems)
فصل ششم: فرآیندهای برنولی و پوآسن
فصل هفتم: زنجیره های مارکوف
فصل هشتم: استنباط آماری بیزی (Bayesian Statistical Inference)
فصل نهم: استنباط آماری کلاسیکی (Classical Statistical Inference)