این پاورپوینت در مورد الگوریتم کلونی زنبور عسل در55 اسلاید زیبا شامل ،پاورپوینت الگوریتم کلونی زنبور عسل،زنبور عسل,لگوریتم کلونی زنبور عسل,الگوریتم زنبور,الگوریتم کلونی،شرح الگوریتم زنبور عسل،الگوریتم کلونی زنبور عسل ،ABC و….می باشد.
هم اکنون کار روی توسعه سیستم های هوشمند با الهام از طبیعت از زمینه های خیلی پرطرفدار هوش مصنوعی است. الگوریتمهای ژنتیک که با استفاده از ایده تکاملی داروینی و انتخاب طبیعی مطرح شده، روش بسیار خوبی برای یافتن مسائل بهینه سازیست. ایده تکاملی داروینی بیانگر این مطلب است که هر نسل نسبت به نسل قبل دارای تکامل است و آنچه در طبیعت رخ می دهد حاصل میلیون ها سال تکامل نسل به نسل موجوداتی مثل مورچه است.
الگوریتم کلونی مورچه برای اولین بار توسط دوریگو (Dorigo) و همکارانش به عنوان یک راه حل چند عامله (Multi Agent) برای مسائل مشکل بهینه سازی مثل فروشنده دوره گرد (TSP :Traveling Sales Person) ارائه شد.
عامل هوشند(Intelligent Agent) موجودی است که از طریق حسگر ها قادر به درک پیرامون خود بوده و از طریق تاثیر گذارنده ها می تواند روی محیط تاثیر بگذارد.
الگوریتم کلونی مورچه الهام گرفته شده از مطالعات و مشاهدات روی کلونی مورچه هاست. این مطالعات نشان داده که مورچه ها حشراتی اجتماعی هستند که در کلونی ها زندگی می کنند و رفتار آنها بیشتر در جهت بقاء کلونی است تا درجهت بقاء یک جزء از آن. یکی از مهمترین و جالبترین رفتار مورچه ها، رفتار آنها برای یافتن غذا است و بویژه چگونگی پیدا کردن کوتاهترین مسیر میان منابع غذایی و آشیانه. این نوع رفتار مورچه ها دارای نوعی هوشمندی توده ای است که اخیرا مورد توجه دانشمندان قرار گرفته است.باید تفاوت هوشمندی توده ای(کلونی) و هوشمندی اجتماعی را روشن کنیم.
در هوشمندی اجتماعی عناصر میزانی از هوشمندی را دارا هستند. بعنوان مثال در فرآیند ساخت ساختمان توسط انسان، زمانی که به یک کارگر گفته میشود تا یک توده آجر را جابجا کند، آنقدر هوشمند هست تا بداند برای اینکار باید از فرغون استفاده کند نه مثلا بیل!!! نکته دیگر تفاوت سطح هوشمندی افراد این جامعه است. مثلا هوشمندی لازم برای فرد معمار با یک کارگر ساده متفاوت است.
در هوشمندی توده ای عناصر رفتاری تصادفی دارند و بین آن ها هیچ نوع ارتباط مستقیمی وجود ندارد و آنها تنها بصورت غیر مستقیم و با استفاده از نشانه ها با یکدیگر در تماس هستند. مثالی در این مورد رفتار موریانه ها در لانه سازیست.
جهت علاقه مند شدن شما به این رفتار موریانه ها وتفاوت هوشمندی توده ای و اجتماعی توضیحاتی را ارائه می دهم :
فرآیند ساخت لانه توسط موریانه ها مورد توجه دانشمندی فرانسوی به نام گرس قرار گرفت. موریانه ها برای ساخت لانه سه فعالیت مشخص از خود بروز می دهند. در ابتدا صدها موریانه به صورت تصادفی به این طرف و آن طرف حرکت می کنند. هر موریانه به محض رسیدن به فضایی که کمی بالاتر از سطح زمین قرار دارد شروع به ترشح بزاق می کنند و خاک را به بزاق خود آغشته می کنند. به این ترتیب گلوله های کوچک خاکی با بزاق خود درست می کنند. علیرغم خصلت کاملا تصادفی این رفتار، نتیجه تا حدی منظم است. در پایان این مرحله در منطقه ای محدود تپه های بسیار کوچک مینیاتوری از این گلوله های خاکی آغشته به بزاق شکل می گیرد. پس از این، همه تپه های مینیاتوری باعث می شوند تا موریانه ها رفتار دیگری از خود بروز دهند. در واقع این تپه ها به صورت نوعی نشانه برای موریانه ها عمل می کنند. هر موریانه به محض رسیدن به این تپه ها با انرژی بسیار بالایی شروع به تولید گلوله های خاکی با بزاق خود می کند. این کار باعث تبدیل شدن تپه های مینیاتوری به نوعی ستون می شود. این رفتار ادامه می یابد تا زمانی که ارتفاع هر ستون به حد معینی برسد. در این صورت موریانه ها رفتار سومی از خود نشان می دهند. اگر در نزدیکی ستون فعلی ستون دیگیری نباشد بلافاصله آن ستون را رها می کنند در غیر این صورت یعنی در حالتی که در نزدیکی این ستون تعداد قابل ملاحظه ای ستون دیگر باشد، موریانه ها شروع به وصل کردن ستونها و ساختن لانه می کنند.
تفاوتهای هوشمندی اجتماعی انسان با هوشمندی توده ای موریانه را در همین رفتار ساخت لانه می توان مشاهده کرد. کارگران ساختمانی کاملا بر اساس یک طرح از پیش تعیین شده عمل می کنند، در حالی که رفتار اولیه موریانه ها کاملا تصادفی است. علاوه بر این ارتیاط مابین کارگران سختمانی مستقیم و از طریق کلمات و … است ولی بین موریانه ها هیچ نوع ارتباط مستقیمی وجود ندارد و آنها تنها بصورت غیر مستقیم و از طریق نشانه ها با یکدیگر در تماس اند. گرس نام این رفتار را Stigmergie گذاشت، به معنی رفتاری که هماهنگی مابین موجودات را تنها از طریق تغییرات ایجاد شده در محیط ممکن می سازد.
بهینه سازی مسائل بروش کلونی مورچه(ACO) :
همانطور که می دانیم مسئله یافتن کوتاهترین مسیر، یک مسئله بهینه سازیست که گاه حل آن بسیار دشوار است و گاه نیز بسیار زمانبر. بعنوان مثال مسئله فروشنده دوره گرد(TSP). در این مسئله فروشنده دوره گرد باید از یک شهر شروع کرده، به شهرهای دیگر برود و سپس به شهر مبدا بازگردد بطوریکه از هر شهر فقط یکبار عبور کند و کوتاهترین مسیر را نیز طی کرده باشد. اگر تعداد این شهرها n باشد در حالت کلی این مسئله از مرتبه (n-1)! است که برای فقط 21 شهر زمان واقعا زیادی می برد:
روز1013*7/1 = S1016*433/2 = ms10*1018*433/2 = !20
با انجام یک الگوریتم برنامه سازی پویا برای این مسئله ، زمان از مرتبه نمایی بدست می آید که آن هم مناسب نیست. البته الگوریتم های دیگری نیز ارائه شده ولی هیچ کدام کارایی مناسبی ندارند. ACO الگوریتم کامل و مناسبی برای حل مسئله TSP است.
مورچه ها چگونه می توانند کوتاهترین مسیر را پیدا کنند؟
مورچه ها هنگام راه ر